Skip to main content

Advertisement

Log in

Management of antibody-mediated autoimmune encephalitis in adults and children: literature review and consensus-based practical recommendations

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Autoimmune encephalitis associated with antibodies against neuronal surface targets (NSAE) are rare but still underrecognized conditions that affect adult and pediatric patients. Clinical guidelines have recently been published with the aim of providing diagnostic clues regardless of antibody status. These syndromes are potentially treatable but the choice of treatment and its timing, as well as differential diagnoses, long-term management, and clinical and paraclinical follow-up, remain major challenges. In the absence of evidence-based guidelines, management of these conditions is commonly based on single-center expertise.

Taking into account different published expert recommendations in addition to the multicenter experience of the Italian Working Group on Autoimmune Encephalitis, both widely accepted and critical aspects of diagnosis, management and particularly of immunotherapy for NSAE have been reviewed and are discussed.

Finally, we provide consensus-based practical advice for managing hospitalization and follow-up of patients with NSAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dalmau J, Graus F (2018) Antibody-mediated encephalitis. N Engl J Med 378:840–851. https://doi.org/10.1056/NEJMra1708712

    Article  PubMed  Google Scholar 

  2. Zuliani L, Graus F, Giometto B et al (2012) Central nervous system neuronal surface antibody associated syndromes: review and guidelines for recognition. J Neurol Neurosurg Psychiatry 83:638–645. https://doi.org/10.1136/jnnp-2011-301237

    Article  PubMed  Google Scholar 

  3. Granerod J, Ambrose HE, Davies NWS et al (2010) Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis 10:835–844. https://doi.org/10.1016/S1473-3099(10)70222-X

    Article  PubMed  Google Scholar 

  4. Sonderen A v, Coenders EC, Sanchez E et al (2016) Anti-LGI1 encephalitis. Neurology 87(14):1449–1456

    Article  PubMed  Google Scholar 

  5. Binks SNM, Klein CJ, Waters P et al (2017) LGI1, CASPR2 and related antibodies: a molecular evolution of the phenotypes. J Neurol Neurosurg Psychiatry 1–9. https://doi.org/10.1136/jnnp-2017-315720

  6. Dubey AD, Pittock SJ, Kelly CR et al (2018) Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann Neurol 83(1):166–177. https://doi.org/10.1002/ana.25131

  7. Graus F, Titulaer MJ, Balu R et al (2016) A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 15:391–404. https://doi.org/10.1016/S1474-4422(15)00401-9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dalmau J (2016) NMDA receptor encephalitis and other antibody-mediated disorders of the synapse. Neurology:2471–2482. https://doi.org/10.1212/WNL.0000000000003414

  9. Leypoldt F, Armangue T, Dalmau J (2015) Autoimmune encephalopathies. Ann N Y Acad Sci 1338:94–114. https://doi.org/10.1111/nyas.12553

    Article  CAS  PubMed  Google Scholar 

  10. Dalmau J, Gleichman AJ, Hughes EG et al (2008) Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 7:1091–1098. https://doi.org/10.1016/S1474-4422(08)70224-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Titulaer MJ, McCracken L, Gabilondo I et al (2013) Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: An observational cohort study. Lancet Neurol 12:157–165. https://doi.org/10.1016/S1474-4422(12)70310-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Florance NR, Davis RL, Lam C et al (2009) Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann Neurol 66:11–18. https://doi.org/10.1002/ana.21756

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dalmau J, Tüzün E, Wu HY et al (2007) Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol 61:25–36. https://doi.org/10.1002/ana.21050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Höftberger R, van Sonderen A, Leypoldt F et al (2015) Encephalitis and AMPA receptor antibodies: novel findings in a case series of 22 patients. Neurology 84:2403–2412. https://doi.org/10.1212/WNL.0000000000001682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lai M, Hughes EG, Peng X et al (2009) AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol 65:424–434. https://doi.org/10.1002/ana.21589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lancaster E, Lai M, Peng X et al (2010) Antibodies to the GABAB receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol 9:67–76. https://doi.org/10.1016/S1474-4422(09)70324-2

    Article  CAS  PubMed  Google Scholar 

  17. Höftberger R, Titulaer MJ, Sabater L et al (2013) Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology 81:1500–1506. https://doi.org/10.1212/WNL.0b013e3182a9585f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jeffery OJ, Lennon VA, Pittock SJ et al (2013) GABAB receptor autoantibody frequency in service serologic evaluation. Neurology 81:882–887. https://doi.org/10.1212/WNL.0b013e3182a35271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Irani SR, Alexander S, Waters P, Kleopa KA, Pettingill P, Zuliani L, Peles E, Buckley C, Lang B, Vincent A (2010) Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 133:2734–2748. https://doi.org/10.1093/brain/awq213

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lai M, Huijbers MGM, Lancaster E et al (2010) Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol 9:1–10. https://doi.org/10.1016/S1474-4422(10)70137-X

    Article  CAS  Google Scholar 

  21. Van Sonderen A, Thijs RD, Coenders EC et al (2016) Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology 87:1449–1456. https://doi.org/10.1212/WNL.0000000000003173

    Article  CAS  PubMed  Google Scholar 

  22. Arino H, Armangué T, Petit-pedrol M et al (2016) Anti-LGI1 – associated cognitive impairment. Neurology 87(8):759–765. https://doi.org/10.1212/WNL.0000000000003009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Irani SR, Pettingill P, Kleopa KA et al (2012) Morvan syndrome: clinical and serological observations in 29 cases. Ann Neurol 72:241–255. https://doi.org/10.1002/ana.23577

    Article  PubMed  Google Scholar 

  24. Becker EBE, Zuliani L, Pettingill R et al (2012) Contactin-associated protein-2 antibodies in non-paraneoplastic cerebellar ataxia. J Neurol Neurosurg Psychiatry 83:437–440. https://doi.org/10.1136/jnnp-2011-301506

    Article  PubMed  Google Scholar 

  25. Lancaster E, Huijbers MGM, Bar V et al (2011) Investigations of caspr2, an autoantigen of encephalitis and neuromyotonia. Ann Neurol 69:303–311. https://doi.org/10.1002/ana.22297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Joubert B, Saint-Martin M, Noraz N et al (2016) Characterization of a subtype of autoimmune encephalitis with anti-Contactin-associated protein-like 2 antibodies in the cerebrospinal fluid, prominent limbic symptoms, and seizures. JAMA Neurol 73:1115–1124. https://doi.org/10.1001/jamaneurol.2016.1585

    Article  PubMed  Google Scholar 

  27. Sonderen A Van, Ariño H, Petit-pedrol M, et al (2016) The clinical spectrum of Caspr2 antibody – associated disease. Neurology 87(5):521–528. https://doi.org/10.1212/WNL

  28. Petit-Pedrol M, Armangue T, Peng X et al (2014) Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol 13:276–286. https://doi.org/10.1016/S1474-4422(13)70299-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Spatola M, Petit-Pedrol M, Simabukuro MM et al (2017) Investigations in GABAAreceptor antibody-associated encephalitis. Neurology 88:1012–1020. https://doi.org/10.1212/WNL.0000000000003713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boronat A, Gelfand JM, Gresa-Arribas N et al (2013) Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol 73:120–128. https://doi.org/10.1002/ana.23756

    Article  CAS  PubMed  Google Scholar 

  31. Tobin WO, Lennon VA, Komorowski L et al (2014) DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 83:1797–1803. https://doi.org/10.1212/WNL.0000000000000991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Balint B, Jarius S, Nagel S et al (2014) Progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology 82:1521–1528. https://doi.org/10.1212/WNL.0000000000000372

    Article  CAS  PubMed  Google Scholar 

  33. Dale RC, Merheb V, Pillai S et al (2012) Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain 135:3453–3468. https://doi.org/10.1093/brain/aws256

    Article  PubMed  Google Scholar 

  34. Lancaster E, Martinez-Hernandez E, Titulaer MJ et al (2011) Antibodies to metabotropic glutamate receptor 5 in the Ophelia syndrome. Neurology 77:1698–1701. https://doi.org/10.1212/WNL.0b013e3182364a44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spatola M, Sabater L, Planagumà J et al (2018) Encephalitis with mGluR5 antibodies: symptoms and antibody effects. Neurology 90:e1964–e1972. https://doi.org/10.1212/WNL.0000000000005614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gresa-Arribas N, Planagumà J, Petit-Pedrol M et al (2016) Human neurexin-3α antibodies associate with encephalitis and alter synapse development. Neurology 86:2235–2242. https://doi.org/10.1212/WNL.0000000000002775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hutchinson M, Waters P, McHugh J et al (2008) Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody. Neurology 71:1291–1292. https://doi.org/10.1212/01.wnl.0000327606.50322.f0

    Article  CAS  PubMed  Google Scholar 

  38. McKeon A, Martinez-Hernandez E, Lancaster E et al (2013) Glycine receptor autoimmune spectrum with stiff-man syndrome phenotype. JAMA Neurol 70:44–50. https://doi.org/10.1001/jamaneurol.2013.574

    Article  PubMed  PubMed Central  Google Scholar 

  39. Carvajal-González A, Leite MI, Waters P et al (2014) Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 137:2178–2192. https://doi.org/10.1093/brain/awu142

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zuliani L, Ferlazzo E, Andrigo C et al (2014) Glycine receptor antibodies in 2 cases of new, adult-onset epilepsy. Neurol Neuroimmunol Neuroinflammation 1:e16. https://doi.org/10.1212/NXI.0000000000000016

    Article  Google Scholar 

  41. van Sonderen A, Roelen DL, Stoop JA, et al (2017) Anti-LGI1 encephalitis is strongly associated with HLA-DR7 and HLA-DRB4. 81:193–198. https://doi.org/10.1002/ana.24858

    Book  Google Scholar 

  42. Kim TJ, Lee ST, Moon J, Sunwoo JS, Byun JI, Lim JA, Shin YW, Jun JS, Lee HS, Lee WJ, Yang AR, Choi Y, Park KI, Jung KH, Jung KY, Kim M, Lee SK, Chu K (2017) Anti-LGI1 encephalitis is associated with unique HLA subtypes. Ann Neurol 81:183–192. https://doi.org/10.1002/ana.24860

    Article  CAS  PubMed  Google Scholar 

  43. Binks S, Varley J, Lee W, Makuch M, Elliott K, Gelfand JM, Jacob S, Leite MI, Maddison P, Chen M, Geschwind MD, Grant E, Sen A, Waters P, McCormack M, Cavalleri GL, Barnardo M, Knight JC, Irani SR (2018) Distinct HLA associations of LGI1 and CASPR2-antibody diseases. Brain 141:2263–2271. https://doi.org/10.1093/brain/awy109

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gaig C, Graus F, Compta Y et al (2017) Clinical manifestations of the anti-IgLON5 disease. Neurology 88:1736–1743. https://doi.org/10.1212/WNL.0000000000003887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Irani SR, Michell AW, Lang B et al (2011) Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 69:892–900. https://doi.org/10.1002/ana.22307

    Article  PubMed  Google Scholar 

  46. Irani SR, Stagg CJ, Schott JM et al (2013) Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 136:3151–3162. https://doi.org/10.1093/brain/awt212

    Article  PubMed  Google Scholar 

  47. Malter MP, Helmstaedter C, Urbach H et al (2010) Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Ann Neurol 67:470–478. https://doi.org/10.1002/ana.21917

    Article  PubMed  Google Scholar 

  48. Graus F, Escudero D, Oleaga L et al (2018) Syndrome and outcome of antibody-negative limbic encephalitis. Eur J Neurol 25:1011–1016. https://doi.org/10.1111/ene.13661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Krupp LB, Tardieu M, Amato MP, Banwell B, Chitnis T, Dale RC, Ghezzi A, Hintzen R, Kornberg A, Pohl D, Rostasy K, Tenembaum S, Wassmer E, for the International Pediatric Multiple Sclerosis Study Group (2013) International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions. Mult Scler 19:1261–1267. https://doi.org/10.1177/1352458513484547

    Article  PubMed  Google Scholar 

  50. Solomon T, Michael BD, Smith PE et al (2012) Management of suspected viral encephalitis in adults - Association of British Neurologists and British Infection Association National Guidelines. J Inf Secur 64:347–373. https://doi.org/10.1016/j.jinf.2011.11.014

    Article  CAS  Google Scholar 

  51. Venkatesan A, Tunkel AR, Bloch KC et al (2013) Case definitions, diagnostic algorithms, and priorities in encephalitis: consensus statement of the international encephalitis consortium. Clin Infect Dis 57:1114–1128. https://doi.org/10.1093/cid/cit458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bradshaw MJ, Venkatesan A (2016) Herpes simplex virus-1 encephalitis in adults: pathophysiology, diagnosis, and management. Neurotherapeutics 13:493–508. https://doi.org/10.1007/s13311-016-0433-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tyler KL (2018) Acute viral encephalitis. N Engl J Med 379:557–566. https://doi.org/10.1016/B978-1-4377-1604-7.00422-X

    Article  PubMed  Google Scholar 

  54. Ramos-Estebanez C, Lizarraga KJ, Merenda A (2014) A systematic review on the role of adjunctive corticosteroids in herpes simplex virus encephalitis: is timing critical for safety and efficacy. Antivir Ther 19:133–139. https://doi.org/10.3851/IMP2683

    Article  CAS  PubMed  Google Scholar 

  55. Venkatesan A, Michael BD, Probasco JC et al (2019) Acute encephalitis in immunocompetent adults. Lancet 393:702–716. https://doi.org/10.1016/S0140-6736(18)32526-1

    Article  PubMed  Google Scholar 

  56. Armangue T, Spatola M, Vlagea A et al (2018) Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol 17:760–772. https://doi.org/10.1016/S1474-4422(18)30244-8

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nosadini M, Mohammad SS, Corazza F et al (2017) Herpes simplex virus-induced anti- N-methyl-D-aspartate receptor encephalitis: a systematic literature review with analysis of 43 cases. Dev Med Child Neurol 59:796–805. https://doi.org/10.1111/dmcn.13448

    Article  PubMed  Google Scholar 

  58. Cavaliere E, Nosadini M, Federica M et al (2019) Anti-NMDAR encephalitis preceded by non-herpetic central nervous system infection : systematic literature review and first case of tick-borne encephalitis triggering anti-NMDAR encephalitis. J Neuroimmunol 332:1–7. https://doi.org/10.1016/j.jneuroim.2019.03.011

    Article  CAS  PubMed  Google Scholar 

  59. Lieberman JA, First MB (2018) Psychotic disorders. N Engl J Med 379:270–280. https://doi.org/10.1056/NEJMra1801490

    Article  CAS  PubMed  Google Scholar 

  60. Al-diwani A, Handel A, Townsend L et al (2019) The psychopathology of NMDAR-antibody encephalitis in adults: a systematic review and phenotypic analysis of individual patient data. Lancet Psychiatry 6:235–246. https://doi.org/10.1016/S2215-0366(19)30001-X

    Article  PubMed  PubMed Central  Google Scholar 

  61. Frontera JA (2012) Metabolic encephalopathies in the critical care unit. Contin Lifelong Learn Neurol 18:611–639. https://doi.org/10.1212/01.CON.0000415431.07019.c2

    Article  Google Scholar 

  62. Klein CJ, Lennon VA, Aston PA et al (2013) Insights from LGI1 and CASPR2 potassium channel complex autoantibody subtyping. JAMA Neurol 70:229–234. https://doi.org/10.1001/jamaneurol.2013.592

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gastaldi M, Zardini E, Leante R, et al (2017) Cerebrospinal fluid analysis and the determination of oligoclonal bands. 38:217–224. https://doi.org/10.1007/s10072-017-3034-2

  64. Kaplan PW, Rossetti AO (2011) EEG patterns and imaging correlations in encephalopathy: encephalopathy part II. J Clin Neurophysiol 28:233–251. https://doi.org/10.1097/WNP.0b013e31821c33a0

    Article  PubMed  Google Scholar 

  65. Spatola M, Dalmau J (2017) Seizures and risk of epilepsy in autoimmune and other inflammatory encephalitis. Curr Opin Neurol 30:345–353. https://doi.org/10.1097/WCO.0000000000000449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nosadini M, Boniver C, Zuliani L et al (2015) Longitudinal electroencephalographic (EEG) findings in pediatric anti-N-methyl-D-aspartate (anti-NMDA) receptor encephalitis: the Padua experience. J Child Neurol 30. https://doi.org/10.1177/0883073813515947

  67. Wieser H, Schindler K, Zumsteg D (2006) EEG in Creutzfeldt–Jakob disease. Clin Neurophysiol 117:935–951. https://doi.org/10.1016/j.clinph.2005.12.007

    Article  PubMed  Google Scholar 

  68. Wulff CH (1982) Subacute sclerosing panencephalitis: serial electroencephalographic studies. J Neurol Neurosurg Psychiatry 45:418–421. https://doi.org/10.1136/jnnp.45.5.418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tunkel AR, Glaser CA, Bloch KC et al (2008) The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 47:303–327. https://doi.org/10.1086/589747

    Article  CAS  PubMed  Google Scholar 

  70. Zoccarato M, Valeggia S, Zuliani L, et al (2019) Conventional brain MRI features distinguishing limbic encephalitis from mesial temporal glioma. Neuroradiology. https://doi.org/10.1007/s00234-019-02212-1

  71. Lancaster E, Lai M, Peng X et al (2010) Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol 9:67–76. https://doi.org/10.1016/S1474-4422(09)70324-2

    Article  CAS  PubMed  Google Scholar 

  72. Spatola M, Petit-Pedrol M, Simabukuro MM et al (2017) Investigations in GABA A receptor antibody-associated encephalitis. Neurology. 88(11):1012–1020. https://doi.org/10.1212/WNL.0000000000003713

  73. Dalmau J, Lancaster E, Martinez-Hernandez E et al (2011) Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol 10:63–74. https://doi.org/10.1016/S1474-4422(10)70253-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Titulaer MJ, Höftberger R, Iizuka T et al (2014) Overlapping demyelinating syndromes and anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 75:411–428. https://doi.org/10.1002/ana.24117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mariotto S, Tamburin S, Salviati A et al (2014) Anti-N-methyl-D-aspartate receptor encephalitis causing a prolonged depressive disorder evolving to inflammatory brain disease. Case Rep Neurol 6:38–43. https://doi.org/10.1159/000358820

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chourmouzi D, Papadopoulou E, Marias K, Drevelegas A (2014) Imaging of brain tumors. Surg Oncol Clin N Am 23:629–684. https://doi.org/10.1016/j.soc.2014.07.004

    Article  PubMed  Google Scholar 

  77. Baumgartner A, Rauer S, Mader I, Meyer PT (2013) Cerebral FDG-PET and MRI findings in autoimmune limbic encephalitis: correlation with autoantibody types. J Neurol 260:2744–2753. https://doi.org/10.1007/s00415-013-7048-2

    Article  PubMed  Google Scholar 

  78. Wegner F, Wilke F, Raab P et al (2014) Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography. BMC Neurol 14:136–147. https://doi.org/10.1186/1471-2377-14-136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Leypoldt F, Höftberger R, Titulaer MJ et al (2015) Investigations on CXCL13 in anti–N-methyl-D-aspartate receptor encephalitis. JAMA Neurol 72:180. https://doi.org/10.1001/jamaneurol.2014.2956

    Article  PubMed  PubMed Central  Google Scholar 

  80. Probasco JC, Solnes L, Nalluri A et al (2017) Abnormal brain metabolism on FDG-PET/CT is a common early finding in autoimmune encephalitis. Neurol - Neuroimmunol Neuroinflammation 4:e352. https://doi.org/10.1212/NXI.0000000000000352

    Article  Google Scholar 

  81. Ances BM, Vitaliani R, Taylor RA et al (2005) Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PET correlates. Brain 128:1764–1777. https://doi.org/10.1093/brain/awh526

    Article  PubMed  Google Scholar 

  82. Heine J, Prüss H, Bartsch T, Ploner CJ, Paul F, Finke C (2015) Imaging of autoimmune encephalitis - relevance for clinical practice and hippocampal function. Neuroscience 309:68–83. https://doi.org/10.1016/j.neuroscience.2015.05.037

    Article  CAS  PubMed  Google Scholar 

  83. Spatola M, Stojanova V, Prior JO et al (2014) Serial brain 18FDG-PET in anti-AMPA receptor limbic encephalitis. J Neuroimmunol 271:53–55. https://doi.org/10.1016/j.jneuroim.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  84. Park S, Choi H, Cheon GJ et al (2015) 18F-FDG PET/CT in anti-LGI1 encephalitis: initial and follow-up findings. Clin Nucl Med 40:156–158. https://doi.org/10.1097/RLU.0000000000000546

    Article  PubMed  Google Scholar 

  85. Finke C, Kopp UA, Scheel M et al (2013) Functional and structural brain changes in anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 74:284–296. https://doi.org/10.1002/ana.23932

    Article  CAS  PubMed  Google Scholar 

  86. Navarro V, Kas A, Apartis E et al (2016) Motor cortex and hippocampus are the two main cortical targets in LGI1-antibody encephalitis. Brain 139:1079–1093. https://doi.org/10.1093/brain/aww012

    Article  PubMed  Google Scholar 

  87. Kothur K, Wienholt L, Mohammad SS et al (2016) Utility of CSF cytokine/chemokines as markers of active intrathecal inflammation: comparison of demyelinating, anti-NMDAR and enteroviral encephalitis. PLoS One 11:1–19. https://doi.org/10.1371/journal.pone.0161656

    Article  CAS  Google Scholar 

  88. Zuliani L, Zoccarato M, Gastaldi M et al (2017) Diagnostics of autoimmune encephalitis associated with antibodies against neuronal surface antigens. Neurol Sci 38:225–229. https://doi.org/10.1007/s10072-017-3032-4

    Article  PubMed  Google Scholar 

  89. McCracken L, Zhang J, Greene M et al (2017) Improving the antibody-based evaluation of autoimmune encephalitis. Neurol Neuroimmunol NeuroInflammation 4:1–7. https://doi.org/10.1212/NXI.0000000000000404

    Article  Google Scholar 

  90. Gresa-Arribas N, Titulaer MJ, Torrents A et al (2014) Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol 13:167–177. https://doi.org/10.1016/S1474-4422(13)70282-5

    Article  CAS  PubMed  Google Scholar 

  91. Gastaldi M, Thouin A, Franciotta D, Vincent A (2017) Pitfalls in the detection of N-methyl-D-aspartate-receptor (NMDA-R) antibodies. Clin Biochem 50:354–355. https://doi.org/10.1016/j.clinbiochem.2016.11.023

    Article  CAS  PubMed  Google Scholar 

  92. Mariotto S, Andreetta F, Farinazzo A et al (2017) Persistence of anti-NMDAR antibodies in CSF after recovery from autoimmune encephalitis. Neurol Sci. https://doi.org/10.1007/s10072-017-2958-x

  93. Van Sonderen A, Schreurs MWJ, De Bruijn MAAM et al (2016) The relevance of VGKC positivity in the absence of LGI1 and Caspr2 antibodies. Neurology 86:1692–1699. https://doi.org/10.1212/WNL.0000000000002637

    Article  CAS  PubMed  Google Scholar 

  94. Lang B, Makuch M, Moloney T, Dettmann I, Mindorf S, Probst C, Stoecker W, Buckley C, Newton CR, Leite MI, Maddison P, Komorowski L, Adcock J, Vincent A, Waters P, Irani SR (2017) Intracellular and non-neuronal targets of voltage-gated potassium channel complex antibodies. J Neurol Neurosurg Psychiatry 88:353–361. https://doi.org/10.1136/jnnp-2016-314758

    Article  PubMed  Google Scholar 

  95. Graus F, Delattre JY, Antoine J-C et al (2004) Recommended diagnostic criteria for paraneoplastic neurological syndromes. J Neurol Neurosurg Psychiatry 75:1135–1141. https://doi.org/10.1136/jnnp.2003.034447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zoccarato M, Gastaldi M, Zuliani L et al (2017) Diagnostics of paraneoplastic neurological syndromes. Neurol Sci 38(Suppl 2):237–242. https://doi.org/10.1007/s10072-017-3031-5

    Article  PubMed  Google Scholar 

  97. Franciotta D, Gastaldi M, Sala A, et al (2017) Diagnostics of the neuromyelitis optica spectrum disorders (NMOSD). 38:231–236. https://doi.org/10.1007/s10072-017-3027-1

    Book  Google Scholar 

  98. Mariotto S, Monaco S, Peschl P et al (2017) MOG antibody seropositivity in a patient with encephalitis: beyond the classical syndrome. BMC Neurol 17:6–11. https://doi.org/10.1186/s12883-017-0971-6

    Article  Google Scholar 

  99. Jarius S, Paul F, Aktas O et al (2018) MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. J Neuroinflammation 15:1–10. https://doi.org/10.1186/s12974-018-1144-2

    Article  CAS  Google Scholar 

  100. Iorio R, Damato V, Evoli A et al (2018) Clinical and immunological characteristics of the spectrum of GFAP autoimmunity: a case series of 22 patients. J Neurol Neurosurg Psychiatry 89:138–146. https://doi.org/10.1136/jnnp-2017-316583

    Article  PubMed  Google Scholar 

  101. Titulaer MJ, Soffietti R, Dalmau J et al (2011) Screening for tumours in paraneoplastic syndromes: report of an EFNS task force. Eur J Neurol 18:19–27. https://doi.org/10.1111/j.1468-1331.2010.03220.x

    Article  CAS  PubMed  Google Scholar 

  102. Ho ACC, Mohammad SS, Pillai SC et al (2017) High sensitivity and specificity in proposed clinical diagnostic criteria for anti-N-methyl-D-aspartate receptor encephalitis. Dev Med Child Neurol 59:1256–1260. https://doi.org/10.1111/dmcn.13579

    Article  PubMed  Google Scholar 

  103. Hacohen Y, Wright S, Gadian J et al (2016) N-methyl-d-aspartate (NMDA) receptor antibodies encephalitis mimicking an autistic regression. Dev Med Child Neurol 58:1092–1094. https://doi.org/10.1111/dmcn.13169

    Article  PubMed  Google Scholar 

  104. Smith JH, Dhamija R, Moseley BD, Sandroni P, Lucchinetti CF, Lennon VA, Kantarci OH (2011) N-methyl-D-aspartate receptor autoimmune encephalitis presenting with opsoclonus-myoclonus. Arch Neurol 68(8):1069–1072. https://doi.org/10.1001/archneurol.2011.166

    Article  PubMed  Google Scholar 

  105. Hacohen Y, Absoud M, Hemingway C et al (2014) NMDA receptor antibodies associated with distinct white matter syndromes. Neurol Neuroimmunol neuroinflammation 1:e2. https://doi.org/10.1212/NXI.0000000000000002

    Article  Google Scholar 

  106. Carecchio M, Zorzi G, Ragona F et al (2018) ATP1A3-related disorders: an update. Eur J Paediatr Neurol 22:257–263. https://doi.org/10.1016/j.ejpn.2017.12.009

    Article  PubMed  Google Scholar 

  107. Sartori S, Nosadini M, Cesaroni E et al (2015) Paediatric anti-N-methyl-d-aspartate receptor encephalitis: the first Italian multicenter case series. Eur J Paediatr Neurol 19:453–463. https://doi.org/10.1016/j.ejpn.2015.02.006

    Article  PubMed  Google Scholar 

  108. Matricardi S, Patrini M, Freri E, Ragona F, Zibordi F, Andreetta F, Nardocci N, Granata T (2016) Cognitive and neuropsychological evolution in children with anti-NMDAR encephalitis. J Neurol 263:765–771. https://doi.org/10.1007/s00415-016-8056-9

    Article  PubMed  Google Scholar 

  109. McKeon A (2013) The importance of early and sustained treatment of a common autoimmune encephalitis. Lancet Neurol 12:123–125. https://doi.org/10.1016/S1474-4422(12)70319-8

    Article  PubMed  Google Scholar 

  110. Nosadini M, Mohammad SS, Ramanathan S et al (2015) Immune therapy in autoimmune encephalitis: a systematic review. Expert Rev Neurother 15:1391–1419. https://doi.org/10.1586/14737175.2015.1115720

    Article  CAS  PubMed  Google Scholar 

  111. Gastaldi M, Thouin A, Vincent A (2016) Antibody-mediated autoimmune encephalopathies and immunotherapies. Neurotherapeutics 13:147–162. https://doi.org/10.1007/s13311-015-0410-6

    Article  CAS  PubMed  Google Scholar 

  112. Lancaster E (2016) The diagnosis and treatment of autoimmune encephalitis. J Clin Neurol 12(1):13. https://doi.org/10.3988/jcn.2016.12.1.1

    Article  Google Scholar 

  113. Dale RC, Gorman MP, Lim M (2017) Autoimmune encephalitis in children: clinical phenomenology, therapeutics, and emerging challenges. Curr Opin Neurol 30:334–344. https://doi.org/10.1097/WCO.0000000000000443

    Article  CAS  PubMed  Google Scholar 

  114. Nosadini M, Mohammad SS, Suppiej A et al (2016) Intravenous immunoglobulin in paediatric neurology: safety, adherence to guidelines, and long-term outcome. Dev Med Child Neurol:1–13. https://doi.org/10.1111/dmcn.13159

  115. Gadian J, Kirk E, Holliday K et al (2017) Systematic review of immunoglobulin use in paediatric neurological and neurodevelopmental disorders. Dev Med Child Neurol 59:136–144. https://doi.org/10.1111/dmcn.13349

    Article  PubMed  Google Scholar 

  116. Suppiej A, Nosadini M, Zuliani L, Pelizza MF, Toldo I, Bertossi C, Tison T, Zoccarato M, Marson P, Giometto B, Dale RC, Sartori S (2016) Plasma exchange in pediatric anti-NMDAR encephalitis: a systematic review. Brain and Development 38:613–622. https://doi.org/10.1016/j.braindev.2016.01.009

    Article  PubMed  Google Scholar 

  117. Vincent A, Buckley C, Schott JM et al (2004) Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain 127:701–712. https://doi.org/10.1093/brain/awh077

    Article  PubMed  Google Scholar 

  118. Byrne S, Mccoy B, Lynch B et al (2014) Does early treatment improve outcomes in N-methyl-D-aspartate receptor encephalitis? Dev Med Child Neurol 56:794–796. https://doi.org/10.1111/dmcn.12411

    Article  PubMed  Google Scholar 

  119. Byrne S, Lim M (2015) N-methyl-d-aspartate receptor antibody encephalitis: how much treatment is enough? Dev Med Child Neurol 57:14–15. https://doi.org/10.1111/dmcn.12559

    Article  PubMed  Google Scholar 

  120. Irani SR, Bera K, Waters P et al (2010) N-methyl-d-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain 133:1655–1667. https://doi.org/10.1093/brain/awq113

    Article  PubMed  PubMed Central  Google Scholar 

  121. Dale RC, Brilot F, Duffy LV et al (2014) Utility and safety of rituximab in pediatric autoimmune and inflammatory CNS disease. Neurology 83:142–150. https://doi.org/10.1212/WNL.0000000000000570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Thompson J, Bi M, Murchison AG, et al (2018) The importance of early immunotherapy in patients with faciobrachial dystonic seizures. 348–356. https://doi.org/10.1093/brain/awx323

  123. Irani SR, Gelfand JM, Al-Diwani A, Vincent A (2014) Cell-surface central nervous system autoantibodies: clinical relevance and emerging paradigms. Ann Neurol 76:168–184. https://doi.org/10.1002/ana.24200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. van Sonderen A, Petit-Pedrol M, Dalmau J, Titulaer MJ (2017) The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis. Nat Rev Neurol 13:290–301. https://doi.org/10.1038/nrneurol.2017.43

    Article  CAS  PubMed  Google Scholar 

  125. Bien CG, Mirzadjanova Z, Baumgartner C et al (2017) Anti-contactin-associated protein-2 encephalitis: relevance of antibody titres, presentation and outcome. Eur J Neurol 24:175–186. https://doi.org/10.1111/ene.13180

    Article  CAS  PubMed  Google Scholar 

  126. Pittock SJ, Palace J (2016) Paraneoplastic and idiopathic autoimmune neurologic disorders: approach to diagnosis and treatment. Handb Clin Neurol 133:165–183. https://doi.org/10.1016/B978-0-444-63432-0.00010-4

  127. Toledano M, Britton JW, McKeon A, Shin C, Lennon VA, Quek AML, So E, Worrell GA, Cascino GD, Klein CJ, Lagerlund TD, Wirrell EC, Nickels KC, Pittock SJ (2014) Utility of an immunotherapy trial in evaluating patients with presumed autoimmune epilepsy. Neurology 82:1578–1586. https://doi.org/10.1212/WNL.0000000000000383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lim J, Lee S, Moon J et al (2019) Development of the clinical assessment scale in autoimmune encephalitis (CASE). Ann Neurol 83:352–358. https://doi.org/10.1002/ana.25421

    Article  Google Scholar 

  129. Dale RC, Pillai S, Brilot F (2013) Cerebrospinal fluid CD19+ B-cell expansion in N-methyl-D-aspartate receptor encephalitis. Dev Med Child Neurol 55:191–193. https://doi.org/10.1111/dmcn.12036

    Article  PubMed  Google Scholar 

  130. Lee WJ, Lee ST, Byun JI et al (2016) Rituximab treatment for autoimmune limbic encephalitis in an institutional cohort. Neurology 86:1683–1691. https://doi.org/10.1212/WNL.0000000000002635

    Article  CAS  PubMed  Google Scholar 

  131. Scheibe F, Prüss H, Mengel AM et al (2016) Bortezomib for treatment of therapy-refractory anti-NMDA receptor encephalitis. Neurology 88:366–379. https://doi.org/10.1212/WNL.0000000000003536

    Article  CAS  PubMed  Google Scholar 

  132. Behrendt V, Krogias C, Reinacher-Schick A et al (2016) Bortezomib treatment for patients with anti-N-methyl-D-aspartate receptor encephalitis. JAMA Neurol 73:1251–1253. https://doi.org/10.1001/jamaneurol.2016.2588.jamaneurology.com

    Article  PubMed  Google Scholar 

  133. Lee WJ, Lee ST, Moon J et al (2016) Tocilizumab in autoimmune encephalitis refractory to rituximab: an institutional cohort study. Neurotherapeutics 13:824–832. https://doi.org/10.1007/s13311-016-0442-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tatencloux S, Chretien P, Rogemond V et al (2015) Intrathecal treatment of anti-N-methyl-d-aspartate receptor encephalitis in children. Dev Med Child Neurol 57:95–99. https://doi.org/10.1111/dmcn.12545

    Article  PubMed  Google Scholar 

  135. Jun J, Lee S, Kim R et al (2018) Tocilizumab treatment for new-onset refractory status epilepticus. Ann Neurol 84:940–945. https://doi.org/10.1002/ana.25374

    Article  CAS  PubMed  Google Scholar 

  136. Nosadini M, Mohammad SS, Toldo I, et al (2018) Mycophenolate mofetil, azathioprine and methotrexate usage in paediatric anti-NMDAR encephalitis: a systematic literature review. Eur J Paediatr Neurol 1–12. https://doi.org/10.1016/j.ejpn.2018.09.008

  137. Finke C, Kopp UA, Prüss H et al (2012) Cognitive deficits following anti-NMDA receptor encephalitis. J Neurol Neurosurg Psychiatry 83:195–198. https://doi.org/10.1136/jnnp-2011-300411

    Article  PubMed  Google Scholar 

  138. Balu R, Mccracken L, Lancaster E, Graus F (2019) A score that predicts 1-year functional status in patients with anti-NMDA receptor encephalitis. Neurology 92:e244–e252. https://doi.org/10.1212/WNL.0000000000006783

    Article  PubMed  PubMed Central  Google Scholar 

  139. Finke C, Prüss H, Heine J et al (2016) Evaluation of cognitive deficits and structural hippocampal damage in encephalitis with leucine-rich, glioma-inactivated 1 antibodies, pp 1–10. https://doi.org/10.1001/jamaneurol.2016.4226

    Book  Google Scholar 

  140. Gabilondo I, Saiz A, Galán L et al (2011) Analysis of relapses in anti-NMDAR encephalitis. Neurology 77:996–999. https://doi.org/10.1212/WNL.0b013e31822cfc6b

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Joanne Fleming for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Zuliani.

Ethics declarations

Conflict of interest

No competing interests have been identified.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuliani, L., Nosadini, M., Gastaldi, M. et al. Management of antibody-mediated autoimmune encephalitis in adults and children: literature review and consensus-based practical recommendations. Neurol Sci 40, 2017–2030 (2019). https://doi.org/10.1007/s10072-019-03930-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-019-03930-3

Keywords

Navigation