AntiNMDA
35.6K views | +0 today
Follow
 
Scooped by Nesrin Shaheen
onto AntiNMDA
Scoop.it!

Diagnosing autoimmune limbic encephalitis | CMAJ

Diagnosing autoimmune limbic encephalitis | CMAJ | AntiNMDA | Scoop.it
KEY POINTS Autoimmune limbic encephalitis is an inflammatory disease involving the medial temporal lobes; it classically presents with the subacute onset of short-term memory deficits, seizures or psychiatric symptoms. Brain magnetic resonance imaging can show medial temporal lobe abnormalities typical of autoimmune limbic encephalitis in suspected cases, but clinicians should be aware of other diseases that may have a similar imaging appearance. Analysis of both electroencephalogram (EEG) and cerebrospinal fluid can provide supportive evidence of neuro-inflammation in patients with suspected autoimmune limbic encephalitis, but a normal EEG or cerebrospinal fluid profile does not exclude the diagnosis. Testing for antibodies to onconeural, cell-surface and synaptic proteins represents a major advancement in the diagnosis of autoimmune limbic encephalitis, although false-positives are possible. Autoimmune limbic encephalitis (ALE) is an inflammatory disease involving the medial temporal lobes; it classically presents with rapid neuropsychiatric decline. Patients with ALE have, and may present with, a diverse array of neuropsychiatric symptoms, which means that they may initially be assessed by any one of a range of medical practitioners. The condition was first described as a paraneoplastic phenomenon, but subsequently, with the discovery of disease-causing antibodies, was shown to be nonparaneoplastic in many cases.1,2 Although ALE is uncommon (an epidemiologic study of encephalitis found the prevalence of ALE without antibody positivity to be only 2 cases per 100 000 people), the incidence of autoimmune encephalitides has risen over the last decade, driven largely by improved antibody detection.3 Autoimmune limbic encephalitis is commonly misdiagnosed, yet early diagnosis and treatment can improve outcomes. We review the approach to diagnosis of ALE, drawing on findings of large cohort and case-control studies, which represent the highest level of evidence in this field (Box 1). We discuss diagnostic criteria for ALE presented in a 2016 position paper by Graus and colleagues (hereafter referred to as the Graus criteria; Box 2),4 which aim to prevent overdiagnosis of ALE and are highly specific.5 These criteria serve as an excellent resource for both specialists and generalists. The treatment of ALE is best coordinated by a specialist in autoimmune neurologic diseases and is beyond the scope of this review. Box 1: Search strategy for this review We screened titles of all publications via PubMed pertaining to the diagnosis of autoimmune limbic encephalitis and/or exclusion of its mimics, dating back to 1964, and reviewed those that were relevant to the subject. We also reviewed the references of all relevant publications for potential inclusion. We emphasized larger cohort and case-control studies over case reports, as well as publications within the last 10 years, given the recent advancements in antibody testing. Box 2: Diagnostic criteria for definite autoimmune limbic encephalitis4 Diagnosis can be made when all 4* of the following criteria have been met: Subacute onset (rapid progression of less than 3 mo) of working memory deficits, seizures, or psychiatric symptoms suggesting involvement of the limbic system. Bilateral brain abnormalities on T2-weighted fluid-attenuated inversion recovery MRI highly restricted to the medial temporal lobes† At least one of the following: CSF pleocytosis (white blood cell count of more than 5 cells per mm3) EEG with epileptic or slow-wave activity involving the temporal lobes Reasonable exclusion of alternative causes Reprinted from Graus F, Titulaer MJ, Balu R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391–404, with permission from Elsevier. Note: CSF = cerebrospinal fluid, EEG = electroencephalogram, MRI = magnetic resonance imaging. ↵* If one of the first 3 criteria is not met, a diagnosis of definite limbic encephalitis can be made only with the detection of antibodies against cell-surface, synaptic, or onconeural proteins. ↵† 18 Fluorodeoxyglucose (18 F-FDG) PET can be used to fulfil this criterion. Results from studies from the past 5 years suggest that 18 F-FDG-PET imaging might be more sensitive than MRI to show an increase in FDG uptake in normal-appearing medial temporal lobes. What are the clinical features of autoimmune limbic encephalitis? Typical symptoms of ALE reflect dysfunction of the limbic structures of the brain and include short-term memory deficits, behavioural changes, anxiety, depression, psychosis and seizures. 1,6,7 Autoimmune limbic encephalitis most often occurs in middle-aged adults, but it can affect people of all ages, ranging from children to older people.1,6–8 Pace of disease progression In retrospective studies of patients with ALE, the median time from symptom onset to clinical assessment was usually several weeks;6,9 this subacute presentation of the disease is highlighted in the Graus criteria and is a hallmark of the disorder.4 Although ALE should be considered in any patient who presents with rapidly progressive memory difficulties, behavioural changes, psychiatric symptoms or seizures of unclear cause, an individual who presents with sudden-onset neurologic symptoms is more likely to have suffered an acute neurologic or systemic insult such as a stroke or toxic ingestion. However, it is important not to classify a patient’s illness as acute before questioning family, friends or caregivers about subtle memory problems or behavioural changes in the preceding days or weeks. Conversely, an individual may seem to have a precipitous deterioration concerning for ALE, but after further history-taking, it becomes apparent that there has been milder cognitive impairment over many months, or even years. Although certain antibodies have been associated with a more insidious presentation of ALE,10 a protracted disease course should alert the physician to the possibility of an alternative diagnosis such as a neurodegenerative disease. Involuntary movements Clinicians should ask caregivers about any hemi-body jerking leading up to presentation, which may represent faciobrachial dystonic seizures. These involuntary movements consist of brief contractions that affect the ipsilateral face, arm and sometimes leg; last a few seconds; can occur up to hundreds of times a day; and are often refractory to treatment with anti-epileptic drugs.11 They are seen with anti–leucine-rich glioma inactivated 1 (LGI1) antibodies, the most common antibody causing ALE.9 Other symptoms likely resulting from focal seizure activity may occur in anti-LGI1 encephalitis, including thermal sensations, piloerection and paroxysmal dizziness spells, but faciobrachial dystonic seizures are especially helpful diagnostically as they are nearly pathognomonic of this disease.11–14 Importantly, a normal electroencephalogram (EEG) during faciobrachial dystonic seizures should not dissuade practitioners, as coincident epileptiform discharges are seen only in the minority.11 A retrospective study of 26 patients with such seizures found that they preceded cognitive impairment typical of ALE in 20 patients (77%);11 thus, faciobrachial dystonic seizures may be a clue to prodromal autoimmune neurologic disease in a patient who appears to present acutely. Why is prompt, correct diagnosis essential? A retrospective study examining admission diagnoses of 50 patients with autoimmune encephalitides such as ALE found that two-thirds were initially thought to have conditions other than encephalitis, including primary psychiatric disorders, idiopathic epilepsy, cerebral ischemia or neurodegeneration.15 Even among the one-third of patients in whom encephalitis was considered, an infectious rather than autoimmune cause was more commonly assumed.15 The potential symptom overlap between these 2 disease processes was highlighted in a prospective study of 203 patients with encephalitis, which found that many traditionally infectious symptoms such as fever did not readily distinguish between an infectious and immune-mediated cause.16 Identification of ALE is important because it facilitates prompt use of immunotherapy which, in observational studies, has been associated with reduced seizure frequency, recovery of cognition and likely even improved survival.12,17 Recognition of ALE also triggers malignancy screening, especially among patients with antibodies that strongly predict the presence of a tumour (discussed later; Table 1). Detection of any occult neoplasm is critical as the malignancy may ultimately determine clinical outcome.1 Table 1: Antibodies that may be found in autoimmune limbic encephalitis, and their tumour associations What tests aid in the diagnosis of ALE? Magnetic resonance imaging Magnetic resonance imaging (MRI) of the brain can show medial temporal lobe changes typical of the disease (Figure 1) and is recommended by expert consensus in suspected cases.4 18-Fluorodeoxyglucose positron emission tomography (18-FDG PET) of the brain may be even more sensitive for temporal lobe abnormalities;29 because this modality is not as accessible to many Canadian practitioners, MRI remains a first-line neuroimaging technique. Bilateral imaging abnormalities restricted to the medial temporal lobes are required for a definitive diagnosis of ALE in the absence of antibody positivity. It is important to bear in mind that other diseases — such as other infectious and inflammatory encephalitides, as well as vascular or neoplastic conditions — may involve these structures (Appendix 1, available at www.cmaj.ca/lookup/suppl/doi:10.1503/cmaj.181548/-/DC1). Figure 1: Brain magnetic resonance imaging in autoimmune limbic encephalitis. On coronal fluid-attenuated inversion recovery (FLAIR) image, bilateral T2-hyperintensity of the medial temporal lobes is seen (A, arrows). (B) Bilateral T2-hyperintensity of the medial temporal lobes is also shown on an axial FLAIR image (arrows). Antibodies targeting contactin-associated protein-like 2 were identified in serum by cell-based assay. Differential diagnosis of temporal lobe changes on MRI In a retrospective review of 251 suspected cases of encephalitis with temporal lobe abnormalities on MRI, nearly 25% were due to herpes simplex virus encephalitis; it is therefore important to rule out this potentially devastating infection in patients with suspected ALE.30 Unilateral rather than bilateral temporal lobe changes, insular involvement and absence of basal ganglia involvement are neuroimaging clues that suggest herpes simplex virus encephalitis rather than ALE (Figure 2A, 2B).30,31 Other major infectious considerations are varicella zoster virus, tuberculosis and neurosyphilis; appropriate testing for these entities should be considered early in the disease course.30,32 Figure 2: Magnetic resonance imaging (MRI) mimics of autoimmune limbic encephalitis. (A, B) Herpes simplex virus encephalitis: On axial T2-weighted image, diffuse T2-hyperintensity of the right anteromedial temporal lobe with swelling is seen (A, arrow). There is also T2-hyperintensity of the right insula (B, arrow) that spares the adjacent basal ganglia (red line demarcating separation). (C, D) Temporal lobe glioma: On axial T2-weighted image, diffuse T2-hyperintensity of the right anteromedial temporal lobe is seen (C, arrow). On follow-up MRI 6 months later, there is heterogenous enhancement with local edema on axial T1-weighted post-gadolinium image, concerning for transformation into high-grade glioma (D, arrow). (E) Status epilepticus: On axial T2-weighted image, there is focal T2-hyperintensity of the medial temporal lobes bilaterally (arrows). (F) Acute ischemic stroke: On axial diffusion–weighted image, there is a diffusion-bright lesion of the left medial temporal lobe within the territory of the left posterior cerebral artery (arrow). There is no extension of the lesion into the more anterior or lateral temporal lobe supplied by the left middle cerebral artery (red line demarcating separation), in keeping with acute infarction restricted to a vascular territory. Several noninfectious diseases may involve the temporal lobes and be mistaken for ALE. Gliomas may cause diffuse temporal lobe changes on MRI, while imaging features of high-grade neoplasm such as necrosis, irregular enhancement and vasogenic edema are absent early on. Although classically thought to present unilaterally, in one retrospective series, bilateral medial temporal lobe involvement was seen in 54% cases of patients with suspected ALE who later developed glioblastoma.33 Follow-up with magnetic resonance imaging is therefore recommended in any patient with possible ALE who progresses atypically, as malignant transformation indicative of high-grade neoplasm may occur (Figure 2C, 2D). Seizures can also cause temporal lobe imaging abnormalities34 (Figure 2E), but early control of seizures with anti-epileptic drugs alone, lack of prodromal neuropsychiatric symptoms and the resolution of temporal lobe changes after cessation of seizure activity are all supportive of seizure-related MRI changes rather than ALE. Ischemic stroke involving the medial temporal lobe usually presents acutely but sometimes causes only mild neurocognitive deficits; patients may delay seeking medical attention. Careful history-taking is needed to differentiate a subacute progression of symptoms over days from a static neurologic insult that occurred days earlier. On MRI, signal abnormality restricted to a vascular territory helps distinguish ischemic stroke from ALE35 (Figure 2F). Electroencephalography Patients with ALE may occasionally have a normal EEG, which does not rule out the diagnosis.9,36 Usually, however, EEG shows slow-wave activity or epileptiform discharges from the temporal lobes of patients with ALE — a clue to brain inflammation. In a retrospective analysis of 19 patients with autoimmune encephalitis and seizures, 10 of 16 patients with ictal EEGs (63%) had seizure onset over the temporal lobe region, which closely mirrored the medial temporal lobe abnormalities seen on MRI in three-quarters of those studied.37 Importantly, EEG abnormalities of the temporal lobes without any observed changes on imaging are not sufficient to make a diagnosis of ALE in the absence of a positive antibody, according to the Graus criteria4 outlined in Box 2. In clinical practice, an EEG that shows slow-wave activity or epileptiform discharges from the temporal lobes in a patient with possible ALE should raise suspicion of the condition even if the initial MRI is normal; in such cases, repeat MRI may be considered, to look for the interval development of medial temporal lobe abnormalities.38 Cerebrospinal fluid analysis Analysis of cerebrospinal fluid can provide evidence of neuro-inflammation in patients with possible ALE. In a retrospective study of 50 patients with paraneoplastic ALE, about 50% had a modest leukocyte pleocytosis in cerebrospinal fluid (< 100 cells/μL), while three-quarters of samples tested for oligoclonal bands were positive. 1 In a larger retrospective pooled-data analysis of 205 patients with ALE, however, leukocyte pleocytosis and oligoclonal bands were each noted in only about 25% of tested cerebrospinal fluid samples.39 These findings suggest that although the presence of leukocyte pleocytosis and oligoclonal bands in cerebrospinal fluid supports a diagnosis of ALE in the appropriate clinical context, their diagnostic sensitivity is low. This is reflected in the Graus criteria, which do not require leukocyte pleocytosis or oligoclonal bands in cerebrospinal fluid for a diagnosis of definite ALE even in the absence of antibody positivity. Testing of the cerebrospinal fluid is also helpful to exclude mimics of ALE, in particular herpes simplex virus encephalitis. A retrospective study found that the cerebrospinal fluid profile alone (leukocyte count, erythrocyte count, protein and glucose) could not reliably differentiate between herpes simplex virus encephalitis and autoimmune encephalitis with temporal lobe abnormalities.30 Polymerase chain reaction (PCR) testing for herpes simplex virus in the cerebrospinal fluid has high diagnostic sensitivity and specificity, but clinicians should be aware that it may be negative early in the disease course.40 If a patient has a negative PCR result but herpes simplex virus encephalitis remains a concern clinically or on neuroimaging, continuing antiviral treatment while awaiting a second lumbar puncture for repeat PCR testing is wise.40 Antibody testing Testing for antibodies to onconeural, cell-surface or synaptic proteins is very helpful in suspected ALE, as a positive disease-specific antibody can make the diagnosis in patients who would not otherwise satisfy Graus criteria.4 The recognition that ALE may be associated with malignancy was followed by the discovery of antineuronal antibodies that supported an immune-mediated disease mechanism.1,41 In a retrospective study of paraneoplastic ALE, antibodies to neural antigens expressed by a tumour (referred to as onconeural antibodies) were identified in 30 of 50 (60%) of patients.1 These were most often anti-Hu or Ma2 antibodies, which are classically found with small-cell lung cancer and testicular tumour, respectively.1 Onconeural antibodies bind intracellular antigens and are therefore of unclear pathogenic significance in ALE; they may simply be an epiphenomenon of a primarily cytotoxic T-cell–mediated process that can lead to irreversible neuronal damage and poor clinical outcomes.42,43 Antibodies to the intracellular antigen glutamic acid decarboxylase may also be associated with ALE, but at much higher titres than are typically seen in type 1 diabetes mellitus.44 More recently, antibodies targeting neuronal cell-surface or synaptic proteins have been discovered in patients with ALE; they bind extracellular antigens and are thus more likely to be pathogenic.6,7,45 These antibodies are variably associated with malignancy, and patients often improve with immunotherapy, owing to reversal of antibody-mediated neuronal dysfunction.2 In a retrospective study of 163 patients with ALE, antibodies were found in 93%, the majority of which targeted neuronal cell-surface or synaptic proteins: LGI1 in 44%, γ-aminobutyric acid B receptor (GABABR) in 16%, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in 7%, and contactin-associated protein-like 2 (CASPR2) in 6%.9 Of note, antibodies to the voltage-gated potassium channel were initially reported in ALE but later found to target the associated proteins LGI1 and CASPR2, rather than the voltage-gated potassium channel itself.46 Antibodies to the N-methyl-d-aspartate receptor (NMDAR) may be identified in ALE, but more often are found in patients with a normal MRI and a characteristic clinical syndrome (anti-NMDAR encephalitis), consisting of abnormal behaviour, speech dysfunction, seizures, dyskinesias or dysautonomia.20,47 Approach to antibody testing Both serum and cerebrospinal fluid testing for the most commonly identified antibodies in ALE (anti-LGI1, GABABR, AMPAR, CASPR2, Hu, Ma2 and GAD) should be considered, to maximize diagnostic yield, as some antibodies (e.g., anti-LGI1) are more sensitive in serum and others (e.g., anti-GABABR) may be identified only in cerebrospinal fluid.14,17 Antibody testing is also worthwhile even in a patient who already meets Graus criteria for definite ALE, as a positive antibody may indicate the likelihood of a specific tumour (Table 1) and inform malignancy screening. The presence of an antibody with a strong tumour association should prompt repeated screening for malignancy if an initial screen is negative, to ensure an occult neoplasm is not missed.48 Even if a patient is ultimately determined to have a diagnosis other than ALE, a positive antibody still requires investigation if it strongly associates with an underlying tumour (e.g., anti-Hu).49 Further detail regarding screening for tumours in paraneoplastic neurologic syndromes such as ALE is beyond the scope of this review, but a comprehensive guideline has been published.48 If a positive antibody is reported in a patient deemed unlikely to have ALE, inquiry should be made into whether the testing laboratory can perform a confirmatory assay to exclude false-positives.10,50 Conclusion Accurate diagnosis of ALE is critical to ensure appropriate management of the disease and to maximize the likelihood of a good patient outcome. Although recently published criteria provide a valuable diagnostic framework for ALE, it is important to understand the rationale behind using conventional diagnostic tools (MRI, EEG and analysis of cerebrospinal fluid), as well as their limitations. While questions remain (Box 3), the ongoing discovery of antibodies to onconeural, cell-surface and synaptic proteins represents a major advancement in the refined diagnosis of ALE, and, as such testing becomes more accessible, a thoughtful diagnostic approach will help to balance patient care with resource management in Canada. Box 3: Unanswered questions Should 18-fluorodeoxyglucose positron emission tomography routinely be performed in patients with suspected autoimmune limbic encephalitis who have a normal magnetic resonance imaging scan? Should more extensive antibody testing be performed in patients who already meet criteria for definite autoimmune limbic encephalitis, but are negative for the most common antibodies associated with this disease? What is the threshold of suspicion for autoimmune limbic encephalitis above which antibody testing should be sent, so as to avoid indiscriminate ordering and minimize the risk of false-positive results? Should methods of antibody testing be standardized across Canadian institutions? Footnotes Competing interests: Jorge Burneo reports receiving grants from the Rick Berg Legacy Fund, the Ontario Brain Institute and Western University, and other support through the Jack Cowin Chair in Epilepsy Research (a Western University Research Chair), outside the submitted work. No other competing interests were declared. This article has been peer reviewed. Contributors: All of the authors contributed to the conception and design of the work, and the acquisition, analysis, and interpretation of data. Adrian Budhram drafted the manuscript. Andrew Leung, Michael Nicolle and Jorge Burneo revised it critically for important intellectual content. All authors gave final approval of the version to be published and agreed to be accountable for all aspects of the work. References ↵Gultekin SH, Rosenfeld MR, Voltz R, et al. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain 2000;123:1481–94.OpenUrlCrossRefPubMed ↵Dalmau J, Graus F. Antibody-mediated encephalitis. N Engl J Med 2018;378:840–51.OpenUrlCrossRefPubMed ↵Dubey D, Pittock SJ, Kelly CR, et al. Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann Neurol 2018;83:166–77.OpenUrlCrossRefPubMed ↵Graus F, Titulaer MJ, Balu R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391–404.OpenUrlCrossRefPubMed ↵Li L, Sun L, Du R, et al. Application of the 2016 diagnostic approach for autoimmune encephalitis from Lancet Neurology to Chinese patients. BMC Neurol 2017;17:195.OpenUrl ↵Höftberger R, Titulaer MJ, Sabater L, et al. Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology 2013;81:1500–6.OpenUrlCrossRefPubMed ↵Lai M, Huijbers MG, Lancaster E, et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol 2010;9:776–85.OpenUrlCrossRefPubMed ↵Honnorat J, Didelot A, Karantoni E, et al. Autoimmune limbic encephalopathy and anti-Hu antibodies in children without cancer. Neurology 2013;80:2226–32.OpenUrlCrossRefPubMed ↵Graus F, Escudero D, Oleaga L, et al. Syndrome and outcome of antibody-negative limbic encephalitis [published erratum in Eur J Neurol 2018;25:1303]. Eur J Neurol 2018;25:1011–6.OpenUrl ↵van Sonderen A, Ariño H, Petit-Pedrol M, et al. The clinical spectrum of Caspr2 antibody-associated disease. Neurology 2016;87:521–8.OpenUrl ↵Irani SR, Michell AW, Lang B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011;69:892–900.OpenUrlCrossRefPubMed ↵van Sonderen A, Thijs RD, Coenders EC, et al. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology 2016;87:1449–56.OpenUrl Aurangzeb S, Symmonds M, Knight RK, et al. LGI1-antibody encephalitis is characterised by frequent, multifocal clinical and subclinical seizures. Seizure 2017;50:14–7.OpenUrl ↵Gadoth A, Pittock SJ, Dubey D, et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann Neurol 2017;82:79–92.OpenUrl ↵Baumgartner A, Rauer S, Hottenrott T, et al. Admission diagnoses of patients later diagnosed with autoimmune encephalitis. J Neurol 2019;266:124–32.OpenUrl ↵Granerod J, Ambrose HE, Davies NW, et al.UK Health Protection Agency (HPA) Aetiology of Encephalitis Study Group. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis 2010;10:835–44.OpenUrlCrossRefPubMed ↵Lancaster E, Lai M, Peng X, et al. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol 2010;9:67–76.OpenUrlCrossRefPubMed Höftberger R, van Sonderen A, Leypoldt F, et al. Encephalitis and AMPA receptor antibodies: novel findings in a case series of 22 patients. Neurology 2015;84: 2403–12.OpenUrlPubMed Laurido-Soto O, Brier MR, Simon LE, et al. Patient characteristics and outcome associations in AMPA receptor encephalitis. J Neurol 2019;266:450–60.OpenUrl ↵Titulaer MJ, McCracken L, Gabilondo I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12:157–65.OpenUrlCrossRefPubMed Spatola M, Sabater L, Planagumà J, et al. Encephalitis with mGluR5 antibodies: symptoms and antibody effects. Neurology 2018;90:e1964–72.OpenUrl Gresa-Arribas N, Planagumà J, Petit-Pedrol M, et al. Human neurexin-3α antibodies associate with encephalitis and alter synapse development. Neurology 2016;86:2235–42.OpenUrl Graus F, Keime-Guibert F, Reñe R, et al. Anti-Hu-associated paraneoplastic encephalomyelitis: analysis of 200 patients. Brain 2001;124:1138–48.OpenUrlCrossRefPubMed Dalmau J, Graus F, Villarejo A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004;127:1831–44.OpenUrlCrossRefPubMed Ariño H, Höftberger R, Gresa-Arribas N, et al. Paraneoplastic neurological syndromes and glutamic acid decarboxylase antibodies. JAMA Neurol 2015;72: 874–81.OpenUrl Pittock SJ, Lucchinetti CF, Parisi JE, et al. Amphiphysin autoimmunity: paraneoplastic accompaniments. Ann Neurol 2005;58:96–107.OpenUrlCrossRefPubMed Yu Z, Kryzer TJ, Griesmann GE, et al. CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann Neurol 2001; 49: 146–54.OpenUrlCrossRefPubMed Do L-D, Chanson E, Desestret V, et al. Characteristics in limbic encephalitis with anti–adenylate kinase 5 autoantibodies. Neurology 2017;88:514–24.OpenUrl ↵Newey CR, Sarwal A, Hantus S. [(18)F]-fluoro-deoxy-glucose positron emission tomography scan should be obtained early in cases of autoimmune encephalitis. Autoimmune Dis 2016;2016:9450452. ↵Chow FC, Glaser CA, Sheriff H, et al. Use of clinical and neuroimaging characteristics to distinguish temporal lobe herpes simplex encephalitis from its mimics. Clin Infect Dis 2015;60:1377–83.OpenUrlCrossRefPubMed ↵Oyanguren B, Sánchez V, González FJ, et al. Limbic encephalitis: a clinical-radiological comparison between herpetic and autoimmune etiologies. Eur J Neurol 2013;20:1566–70.OpenUrlCrossRefPubMed ↵Budhram A, Silverman M, Burneo JG. Neurosyphilis mimicking autoimmune encephalitis in a 52-year-old man. CMAJ 2017;189:E962–5.OpenUrlFREE Full Text ↵Vogrig A, Joubert B, Ducray F, et al. Glioblastoma as differential diagnosis of autoimmune encephalitis. J Neurol 2018;265:669–77.OpenUrl ↵Kim JA, Chung JI, Yoon PH, et al. Transient MR signal changes in patients with generalized tonicoclonic seizure or status epilepticus: periictal diffusion-weighted imaging. AJNR Am J Neuroradiol 2001;22:1149–60. ↵Hosoki S, Satoi H, Matsumoto S. Bilateral hippocampal infarction mimicking limbic encephalitis. Intern Med 2018;57:911–2.OpenUrl ↵Vincent A, Buckley C, Schott JM, et al. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain 2004;127:701–12.OpenUrlCrossRefPubMed ↵Steriade C, Moosa ANV, Hantus S, et al. Electroclinical features of seizures associated with autoimmune encephalitis. Seizure 2018;60:198–204.OpenUrl ↵Pessa ME, Janes F, Gigli GL. Electroencephalographic evaluation for early diagnosis of limbic encephalitis. Clin EEG Neurosci 2016;47:207–10.OpenUrlCrossRefPubMed ↵Malter MP, Elger CE, Surges R. Diagnostic value of CSF findings in antibody-associated limbic and anti-NMDAR-encephalitis. Seizure 2013;22:136–40.OpenUrlCrossRefPubMed ↵Weil AA, Glaser CA, Amad Z, et al. Patients with suspected herpes simplex encephalitis: rethinking an initial negative polymerase chain reaction result. Clin Infect Dis 2002;34:1154–7.OpenUrlCrossRefPubMed ↵Graus F, Delattre JY, Antoine JC, et al. Recommended diagnostic criteria for paraneoplastic neurological syndromes. J Neurol Neurosurg Psychiatry 2004;75:1135–40. ↵Lancaster E. Paraneoplastic disorders. Continuum (Minneap Minn) 2015; 21 (Neuro-oncology):452–75.OpenUrl ↵Voltz R, Gultekin SH, Rosenfeld MR, et al. A serologic marker of paraneoplastic limbic and brain-stem encephalitis in patients with testicular cancer. N Engl J Med 1999;340:1788–95.OpenUrlCrossRefPubMed ↵Saiz A, Blanco Y, Sabater L, et al. Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: diagnostic clues for this association. Brain 2008;131:2553–63.OpenUrlCrossRefPubMed ↵Dalmau J, Gleichman AJ, Hughes EG, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 2008;7:1091–8.OpenUrlCrossRefPubMed ↵van Sonderen A, Petit-Pedrol M, Dalmau J, et al. The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis. Nat Rev Neurol 2017;13:290–301.OpenUrl ↵Pellkofer HL, Kuempfel T, Jacobson L, et al. Non-paraneoplastic limbic encephalitis associated with NMDAR and VGKC antibodies. J Neurol Neurosurg Psychiatry 2010;81:1407–8.OpenUrlFREE Full Text ↵Titulaer MJ, Soffietti R, Dalmau J, et al.European Federation of Neurological Societies. Screening for tumours in paraneoplastic syndromes: report of an EFNS task force. Eur J Neurol 2011;18:19–e3.OpenUrlCrossRefPubMed ↵Dalmau J, Furneaux HM, Gralla RJ, et al. Detection of the anti-Hu antibody in the serum of patients with small cell lung cancer — a quantitative western blot analysis. Ann Neurol 1990;27:544–52.OpenUrlCrossRefPubMed ↵Budhram A, Nicolle MW, Yang L. The positive predictive value of onconeural antibody testing: a retrospective review. Can J Neurol Sci 2018;45:577–9.OpenUrl
george sperco's curator insight, February 7, 2023 1:18 PM
https://farmaciadicura.com https://farmaciadicura.com/Prodotto/acquista-metaqualone-in-linea/ https://farmaciadicura.com/Prodotto/acquista-ossicodone-10-mg-sandoz/ https://farmaciadicura.com/Prodotto/acquista-ossicodone-15-mg-sandoz/ https://farmaciadicura.com/Prodotto/acquista-ossicodone-20-mg-sandoz/ https://farmaciadicura.com/Prodotto/acquista-ossicodone-30-mg-sandoz/ https://farmaciadicura.com/Prodotto/acquista-ossicodone-5-mg-sandoz/ https://farmaciadicura.com/Prodotto/acquista-ossicodone-60-mg-sandoz/ https://farmaciadicura.com/Prodotto/acquista-ossicodone-80-mg-sandoz/ https://farmaciadicura.com/Prodotto/acquista-quaalude-online/ https://farmaciadicura.com/Prodotto/acquista-adderall-in-linea-italia/ https://farmaciadicura.com/Prodotto/acquista-ambien-in-linea-italia/ https://farmaciadicura.com/Prodotto/acquista-buprenorfina-in-linea-italia/ https://farmaciadicura.com/Prodotto/acquista-cocaina-boliviana-in-linea/ https://farmaciadicura.com/Prodotto/acquista-cocaina-a-squame-di-pesce/ https://farmaciadicura.com/Prodotto/acquista-desoxyn-in-linea-italia/ https://farmaciadicura.com/Prodotto/acquista-dilaudid-in-linea-italia/ https://farmaciadicura.com/Prodotto/acquistare-eroina-in-linea-italia/ https://farmaciadicura.com/Prodotto/acquista-fentanil-in-linea-italia/ https://farmaciadicura.com/Prodotto/acquista-fentermina-in-linea-italia/ https://farmaciadicura.com/Prodotto/acquista-la-morfina-iniettabile-italia/ https://farmaciadicura.com/Prodotto/acquista-morfina-in-linea-italia/ https://wereldwijdeapotheek.com/ https://wereldwijdeapotheek.com/product/ketamine-poeder-kopen/ https://wereldwijdeapotheek.com/product/koop-4-aco-dmt-online/ https://wereldwijdeapotheek.com/product/koop-adderall-online/ https://wereldwijdeapotheek.com/product/koop-boliviaanse-cocaine-online/ https://wereldwijdeapotheek.com/product/koop-bruine-heroine-online/ https://wereldwijdeapotheek.com/product/koop-codeine-linctus-online/ https://wereldwijdeapotheek.com/product/koop-crack-cocaine-online/ https://wereldwijdeapotheek.com/product/koop-desoxyn-online/ https://wereldwijdeapotheek.com/product/koop-dexedrine-online09/ https://wereldwijdeapotheek.com/product/koop-fentanyl-citrate-online-09/ https://wereldwijdeapotheek.com/product/koop-fentanyl-poeder-online/ https://wereldwijdeapotheek.com/product/koop-fentanyl-pleister-online09/ https://wereldwijdeapotheek.com/product/koop-fishscale-cocaine-online/ https://wereldwijdeapotheek.com/product/koop-flakka-a-pvp-online/ https://wereldwijdeapotheek.com/product/koop-gouden-leraar-paddenstoelen-online1/ https://wereldwijdeapotheek.com/product/koop-heroine-online/ https://wereldwijdeapotheek.com/product/koop-hydromorphone-online/ https://wereldwijdeapotheek.com/product/koop-morfine-online/ https://wereldwijdeapotheek.com/product/koop-natriumcyanide-100-mg-online/ https://wereldwijdeapotheek.com/product/koop-nembutal-pentobarbital-online1g/ https://wereldwijdeapotheek.com/product/koop-oxycodon-hcl-online/ https://wereldwijdeapotheek.com/product/koop-oxycodon-nachts-online/ https://wereldwijdeapotheek.com/product/koop-oxycontin-online/ https://wereldwijdeapotheek.com/product/koop-psilocybe-cubensis-b-online/ https://farmaciadicura.com/Prodotto/acquista-ossicodone-in-linea-italia/ https://farmaciadicura.com/Prodotto/acquista-ossicodone-pillole-in-linea-italia/ https://farmaciadicura.com/Prodotto/acquista-percocet-in-linea-italia/ https://farmaciadicura.com/Prodotto/acquista-ritalin-in-linea-italia/ https://farmaciadicura.com/Prodotto/acquista-stilnox-in-linea-italia/ https://farmaciadicura.com/Prodotto/acquista-strisce-di-suboxone-italia/ https://farmaciadicura.com/Prodotto/acquista-subutex-in-linea-italia/ https://farmaciadicura.com/Prodotto/acquista-vyvanse-in-linea-italia/ https://farmaciadicura.com/Prodotto/acquista-xanax-in-linea-italia/ https://wereldwijdeapotheek.com/product/koop-ritalin-online/ https://wereldwijdeapotheek.com/product/koop-seconal-sodium-online/ https://wereldwijdeapotheek.com/product/koop-stilnox-online/ https://wereldwijdeapotheek.com/product/koop-suboxone-online/ https://wereldwijdeapotheek.com/product/koop-suboxone-strips/ https://wereldwijdeapotheek.com/product/koop-subutex-online/ https://wereldwijdeapotheek.com/product/koop-ultram-online/ https://wereldwijdeapotheek.com/product/koop-vicodin-online/ https://wereldwijdeapotheek.com/product/koop-vyvanse-online/ https://wereldwijdeapotheek.com/product/koop-witte-heroine-online/ https://wereldwijdeapotheek.com/product/koop-xanax-online/ https://wereldwijdeapotheek.com/product/koop-percocet-online1/ https://wereldwijdeapotheek.com/product/koop-phentermine-adipex-online09/ https://healthmartpsychedelics.com/ https://healthmartpsychedelics.com/produit/acheter-acxion-fentermina-30mg/ https://healthmartpsychedelics.com/produit/acheter-adderall-en-ligne/ https://healthmartpsychedelics.com/produit/achetez-ambien-en-ligne/ https://healthmartpsychedelics.com/produit/achetez-des-bandes-de-suboxone/ https://healthmartpsychedelics.com/produit/acheter-buprenorphine-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-contrave-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-desoxyn-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-du-dilaudid-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-duromine-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-de-lephedrine-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-fentanyl-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-de-la-morphine-injectable/ https://healthmartpsychedelics.com/produit/achetez-du-cyanure-de-sodium-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-meratrim-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-morphine-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-de-loxycodone-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-80-mg-doxycodone-en-ligne/ https://healthmartpsychedelics.com/produit/achetez-ozempic-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-du-percocet-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-phentermine-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-qsymia-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-ritaline-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-rybelsus-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-saxenda-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-stilnox-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-subutex-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-trulicity-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-victoza-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-vyvanse-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-wegovy-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-xanax-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-du-xanax-vert-en-ligne/ https://healthmartpsychedelics.com/produit/acheter-xenical-en-ligne/ https://farmaciadesalud.com/tienda/comprar-dexedrina-en-linea/ https://farmaciadesalud.com/tienda/comprar-heroina-blanca-en-linea/ https://farmaciadesalud.com/tienda/comprar-heroina-de-alquitran-negro/ https://farmaciadesalud.com/tienda/comprar-heroina-lobo-artico/ https://farmaciadesalud.com/tienda/comprar-heroina-marron-en-linea/ https://farmaciadesalud.com/tienda/comprar-makatussin-en-linea/ https://farmaciadesalud.com/tienda/comprar-oxicodona-10-mg-sandoz/ https://farmaciadesalud.com/tienda/comprar-oxicodona-15-mg-sandoz/ https://farmaciadesalud.com/tienda/comprar-oxicodona-20-mg-sandoz/ https://farmaciadesalud.com/tienda/comprar-oxicodona-30-mg-sandoz/ https://farmaciadesalud.com/tienda/comprar-oxicodona-5-mg-sandoz/ https://farmaciadesalud.com/tienda/comprar-oxicodona-60-mg-sandoz/ https://farmaciadesalud.com/tienda/comprar-oxicodona-80-mg-sandoz/ https://farmaciadesalud.com/tienda/comprar-pastillas-de-nembutal/ https://farmaciadesalud.com/tienda/compre-polvo-de-nembutal-en-linea/ https://farmaciadesalud.com/tienda/comprar-crack-de-cocaina-en-linea/ https://farmaciadesalud.com/tienda/comprar-desoxyn-en-linea/ https://farmaciadesalud.com/tienda/comprar-dilaudid-en-linea/ https://farmaciadesalud.com/tienda/comprar-efedrina-hcl-en-linea/ https://farmaciadesalud.com/tienda/comprar-fentanilo-en-linea/ https://farmaciadesalud.com/tienda/comprar-fentermina-en-linea/ https://farmaciadesalud.com/tienda/comprar-heroina-en-linea/ https://farmaciadesalud.com/tienda/comprar-morfina-inyectable-en-linea/ https://farmaciadesalud.com/tienda/comprar-morfina-en-linea/ https://farmaciadesalud.com/tienda/comprar-pastillas-de-oxicodona-en-linea/ https://farmaciadesalud.com/tienda/comprar-oxycodone-en-linea/ https://farmaciadesalud.com/tienda/comprar-oxycontin-en-linea/ https://farmaciadesalud.com/tienda/comprar-percocet-en-linea/ https://farmaciadesalud.com/tienda/comprar-ritalin-en-linea/ https://farmaciadesalud.com/tienda/comprar-nembutal-inyectable-en-linea/ https://farmaciadesalud.com/tienda/comprar-stilnox-en-linea/ https://farmaciadesalud.com/tienda/comprar-tiras-de-suboxone-en-linea/ https://farmaciadesalud.com/tienda/comprar-suboxone-en-linea/ https://farmaciadesalud.com/tienda/comprar-subutex-en-linea/ https://farmaciadesalud.com/tienda/comprar-viagra-en-linea/ https://farmaciadesalud.com/tienda/comprar-vyvanse-en-linea/ https://farmaciadesalud.com/tienda/comprar-xanax-en-linea/ https://acquistaossicodoneitalia.com/ https://acquistaossicodoneitalia.com/negozio/acquista-ossicodone-10-mg-sandoz-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-ossicodone-15-mg-sandoz-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-ossicodone-20-mg-sandoz-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-ossicodone-30-mg-sandoz-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-ossicodone-5-mg-sandoz-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-ossicodone-60-mg-sandoz-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-ossicodone-80-mg-sandoz-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-adderall-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-ambien-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-buprenorfina-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-cocaina-boliviana-in-linea/ https://acquistaossicodoneitalia.com/negozio/acquista-cocaina-a-squame-di-pesce/ https://acquistaossicodoneitalia.com/negozio/acquista-cocaina-crack-in-linea/ https://acquistaossicodoneitalia.com/negozio/acquista-desoxyn-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-dilaudid-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquistare-eroina-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-fentanil-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-fentermina-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-la-morfina-iniettabile-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-morfina-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-ossicodone-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-ossicodone-pillole-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-oxycontin-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-percocet-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-ritalin-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-stilnox-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-strisce-di-suboxone-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-subutex-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-viagra-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-vyvanse-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-xanax-in-linea-italia/ https://acquistaossicodoneitalia.com/negozio/acquista-laudano-droga-online/ https://acquistaossicodoneitalia.com/negozio/acquista-metaqualone-in-linea/ https://acquistaossicodoneitalia.com/negozio/acquista-quaaludes-in-linea/ https://pharmacieanglaise.com/ https://pharmacieanglaise.com/shop/acheter-adderall-en-ligne-canada/ https://pharmacieanglaise.com/shop/achetez-ambien-en-ligne-canada/ https://pharmacieanglaise.com/shop/achetez-des-bandes-de-suboxone-canada/ https://pharmacieanglaise.com/shop/acheter-buprenorphine-en-ligne-canada/ https://pharmacieanglaise.com/shop/acheter-desoxyn-en-ligne-canada/ https://pharmacieanglaise.com/shop/acheter-du-dilaudid-en-ligne-canada/ https://pharmacieanglaise.com/shop/acheter-fentanyl-en-ligne-canada/ https://pharmacieanglaise.com/shop/acheter-de-la-morphine-injectable-canada/ https://pharmacieanglaise.com/shop/achetez-du-cyanure-de-sodium-en-ligne/ https://pharmacieanglaise.com/shop/acheter-morphine-en-ligne-canada/ https://pharmacieanglaise.com/shop/acheter-de-loxycodone-en-ligne-canada/ https://pharmacieanglaise.com/shop/acheter-80-mg-doxycodone-en-ligne-canada/ https://pharmacieanglaise.com/shop/acheter-de-loxycontin-en-ligne-canada/ https://pharmacieanglaise.com/shop/acheter-du-percocet-en-ligne-canada/ https://pharmacieanglaise.com/shop/acheter-phentermine-en-ligne-canada/ https://pharmacieanglaise.com/shop/acheter-ritaline-en-ligne-canada/ https://pharmacieanglaise.com/shop/acheter-stilnox-en-ligne-canada/ https://pharmacieanglaise.com/shop/acheter-subutex-en-ligne-canada/ https://pharmacieanglaise.com/shop/acheter-le-viagra-en-ligne-canada/ https://pharmacieanglaise.com/shop/acheter-vyvanse-en-ligne-canada/ https://pharmacieanglaise.com/shop/acheter-xanax-en-ligne-canada/ https://pharmacieanglaise.com/shop/acheter-du-xanax-vert-en-ligne-canada/
good health's curator insight, January 16, 11:33 AM
https://farmaciadimagrante.com/ https://farmaciadimagrante.com/Prodotto/acquista-cristallo-mdma-online/ https://farmaciadimagrante.com/Prodotto/acquista-ativan-online/ https://farmaciadimagrante.com/Prodotto/acquista-botox-online/ https://farmaciadimagrante.com/Prodotto/acquista-cerotti-al-fentanil/ https://farmaciadimagrante.com/Prodotto/acquista-codeina-linctus-online/ https://farmaciadimagrante.com/Prodotto/acquista-codeina-online/ https://farmaciadimagrante.com/Prodotto/acquista-demerol-online/ https://farmaciadimagrante.com/Prodotto/acquista-depalgo-online/ https://farmaciadimagrante.com/Prodotto/acquista-diazepam-online/ https://farmaciadimagrante.com/Prodotto/acquistare-idromorfone-online/ https://farmaciadimagrante.com/Prodotto/acquista-endocet-online/ https://farmaciadimagrante.com/Prodotto/acquista-green-xanax/ https://farmaciadimagrante.com/Prodotto/acquista-hydrocodone-online/ https://farmaciadimagrante.com/Prodotto/acquista-instanyl-online/ https://farmaciadimagrante.com/Prodotto/acquista-l-ritalin-online/ https://farmaciadimagrante.com/Prodotto/acquista-metadone/ https://farmaciadimagrante.com/Prodotto/acquista-morfina-solfato/ https://farmaciadimagrante.com/Prodotto/acquista-opana-online/ https://farmaciadimagrante.com/Prodotto/acquista-roxicodone-30mg/ https://farmaciadimagrante.com/Prodotto/acquista-stilnox-online/ https://farmaciadimagrante.com/Prodotto/acquista-suboxone-8mg/ https://farmaciadimagrante.com/Prodotto/acquista-subutex-online/ https://farmaciadimagrante.com/Prodotto/acquista-vicodin-online/ https://farmaciadimagrante.com/Prodotto/acquista-vyvanse-online/ https://farmaciadimagrante.com/Prodotto/acquista-xanax-2mg/ https://farmaciadimagrante.com/Prodotto/acquistare-dapoxetina-online/ https://farmaciadimagrante.com/Prodotto/acquistare-rohypnol-2mg/ https://farmaciadimagrante.com/Prodotto/acquistare-sibutramina-online/ https://farmaciadimagrante.com/Prodotto/efedrina-hcl-in-polvere/ https://farmaciadimagrante.com/Prodotto/ephedrine-hcl-30mg/ https://farmaciadimagrante.com/Prodotto/sciroppo-di-metadone/ https://farmaciadimagrante.com/Prodotto/tramadolo-hcl-200mg/ acquista-ativan-online acquista-botox-online acquista-cerotti-al-fentanil acquista-codeina-linctus-online acquista-codeina-online acquista-demerol-online acquista-depalgo-online acquista-diazepam-online acquistare-idromorfone-online acquista-endocet-online acquista-green-xanax acquista-hydrocodone-online acquista-instanyl-online acquista-l-ritalin-online acquista-metadone acquista-morfina-solfato acquista-opana-online acquista-roxicodone-30mg acquista-stilnox-online acquista-suboxone-8mg acquista-subutex-online acquista-vicodin-online acquista-vyvanse-online acquista-xanax-2mg acquistare-dapoxetina-online acquistare-rohypnol-2mg acquistare-sibutramina-online efedrina-hcl-in-polvere ephedrine-hcl-30mg sciroppo-di-metadone tramadolo-hcl-200mg acquista-adderall-30mg-online acquistare-sibutramina-online-2omg acquista-efedrina-hcl-30mg acquista-adipex-online-75mg acquista-phentermine-online-senza-prescrizione-medica acquistare-vyvanse-online-70mg https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-ativan-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-botox-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-cerotti-al-fentanil/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-codeina-linctus-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-codeina-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-demerol-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-depalgo-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-diazepam-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquistare-idromorfone-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-endocet-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-green-xanax/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-hydrocodone-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-instanyl-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-l-ritalin-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-metadone/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-morfina-solfato/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-opana-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-roxicodone-30mg/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-stilnox-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-suboxone-8mg/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-subutex-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-vicodin-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-vyvanse-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-xanax-2mg/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquistare-dapoxetina-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquistare-rohypnol-2mg/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquistare-sibutramina-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/efedrina-hcl-in-polvere/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/ephedrine-hcl-30mg/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/sciroppo-di-metadone/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/tramadolo-hcl-200mg/ acquista-ativan-online acquista-botox-online acquista-cerotti-al-fentanil acquista-codeina-linctus-online acquista-codeina-online acquista-demerol-online acquista-depalgo-online acquista-diazepam-online acquistare-idromorfone-online acquista-endocet-online acquista-green-xanax acquista-hydrocodone-online acquista-instanyl-online acquista-l-ritalin-online acquista-metadone acquista-morfina-solfato acquista-opana-online acquista-roxicodone-30mg acquista-stilnox-online acquista-suboxone-8mg acquista-subutex-online acquista-vicodin-online acquista-vyvanse-online acquista-xanax-2mg acquistare-dapoxetina-online acquistare-rohypnol-2mg acquistare-sibutramina-online efedrina-hcl-in-polvere ephedrine-hcl-30mg sciroppo-di-metadone tramadolo-hcl-200mg
AntiNMDA
Your new post is loading...
Scooped by Nesrin Shaheen
Scoop.it!

Josep Dalmau receives the “Scientific Breakthrough 2023” Award from the American Brain Foundation

The accolade recognises the commitment of this Clínic Barcelona-IDIBAPS researcher to deepening our understanding of autoimmune neurological diseases such...
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

IDIBAPS creates three multidisciplinary research programs to encourage collaboration among its groups

They are the Translational cancer research program, the Synaptic autoimmunity in neurology, psychiatry and cognitive neuroscience program and the Lymphoid...
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

ExTINGUISH: A Beacon of Hope for NMDAR Encephalitis

No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

MR Imaging Findings in a Large Population of Autoimmune Encephalitis | American Journal of Neuroradiology

MR Imaging Findings in a Large Population of Autoimmune Encephalitis | American Journal of Neuroradiology | AntiNMDA | Scoop.it
Research ArticleAdult Brain MR Imaging Findings in a Large Population of Autoimmune Encephalitis S. Gillon, M. Chan, J. Chen, E.L. Guterman, X. Wu, C.M. Glastonbury and Y. Li American Journal of Neuroradiology July 2023, 44 (7) 799-806; DOI: https://doi.org/10.3174/ajnr.A7907 ArticleFigures & DataInfo & MetricsReferences PDF This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased. AbstractBACKGROUND AND PURPOSE: Autoimmune encephalitis is a rare condition in which autoantibodies attack neuronal tissue, causing neuropsychiatric disturbances. This study sought to evaluate MR imaging findings associated with subtypes and categories of autoimmune encephalitis.MATERIALS AND METHODS: Cases of autoimmune encephalitis with specific autoantibodies were identified from the medical record (2009–2019). Cases were excluded if no MR imaging of the brain was available, antibodies were associated with demyelinating disease, or >1 concurrent antibody was present. Demographics, CSF profile, antibody subtype and group (group 1 intracellular antigen or group 2 extracellular antigen), and MR imaging features at symptom onset were reviewed. Imaging and clinical features were compared across antibody groups using χ2 and Wilcoxon rank-sum tests.RESULTS: Eighty-five cases of autoimmune encephalitis constituting 16 distinct antibodies were reviewed. The most common antibodies were anti-N-methyl-D-aspartate (n = 41), anti-glutamic acid decarboxylase (n = 7), and anti-voltage-gated potassium channel (n = 6). Eighteen of 85 (21%) were group 1; and 67/85 (79%) were group 2. The median time between MR imaging and antibody diagnosis was 14 days (interquartile range, 4–26 days). MR imaging had normal findings in 33/85 (39%), and 20/33 (61%) patients with normal MRIs had anti-N-methyl-D-aspartate receptor antibodies. Signal abnormality was most common in the limbic system (28/85, 33%); 1/68 (1.5%) had susceptibility artifacts. Brainstem and cerebellar involvement were more common in group 1, while leptomeningeal enhancement was more common in group 2.CONCLUSIONS: Sixty-one percent of patients with autoimmune encephalitis had abnormal brain MR imaging findings at symptom onset, most commonly involving the limbic system. Susceptibility artifact is rare and makes autoimmune encephalitis less likely as a diagnosis. Brainstem and cerebellar involvement were more common in group 1, while leptomeningeal enhancement was more common in group 2.ABBREVIATIONS:AIEautoimmune encephalitisanti-Gq1banti-ganglioside Q1banti-LGI1anti-leucine-rich glioma inactivated 1CASPR2contactin-associated protein-like 2GABAgamma-aminobutyric acidGADglutamic acid decarboxylaseGFAPglial fibrillary acidic proteinNMDAN-methyl-D-aspartatePD-1programmed cell death protein 1VGCCvoltage gated calcium channelVGKCvoltage-gated potassium channel© 2023 by American Journal of NeuroradiologyView Full Text Log in using your username and password Username * Password * Forgot your user name or password? PreviousNext Back to top In this issue American Journal of Neuroradiology Vol. 44, Issue 7 1 Jul 2023 Table of ContentsIndex by authorComplete Issue (PDF) Print Download PDF Email Article Citation Tools Share Tweet WidgetFacebook LikeGoogle Plus One Purchase Related ArticlesNo related articles found.PubMedGoogle Scholar Cited By...No citing articles found.CrossrefGoogle Scholar More in this TOC Section Cost-Effectiveness Analysis of 68Ga-DOTATATE PET/MRI in Radiotherapy Planning in Patients with Intermediate-Risk Meningioma Choroid Plexus Calcification Correlates with Cortical Microglial Activation in Humans: A Multimodal PET, CT, MRI Study Show more ADULT BRAIN Similar Articles
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Elevated blood and cerebrospinal fluid biomarkers of microglial activation and blood‒brain barrier disruption in anti-NMDA receptor encephalitis | Journal of Neuroinflammation | Full Text

Elevated blood and cerebrospinal fluid biomarkers of microglial activation and blood‒brain barrier disruption in anti-NMDA receptor encephalitis | Journal of Neuroinflammation | Full Text | AntiNMDA | Scoop.it
Background Anti-NMDA receptor (NMDAR) encephalitis is an autoimmune disease characterized by complex neuropsychiatric syndrome and cerebrospinal fluid (CSF) NMDAR antibodies. Triggering receptor expressed on myeloid cells 2 (TREM2) has been reported to be associated with inflammation of the...
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Anti-N-methyl-d-aspartate receptor encephalitis and positive human herpesvirus-7 deoxyribonucleic acid in cerebrospinal fluid: a case report | Journal of Medical Case Reports | Full Text

Anti-N-methyl-d-aspartate receptor encephalitis and positive human herpesvirus-7 deoxyribonucleic acid in cerebrospinal fluid: a case report | Journal of Medical Case Reports | Full Text | AntiNMDA | Scoop.it
Background Anti-N-methyl-d-aspartate receptor encephalitis is a neuroautoimmune syndrome typically presenting with seizures, psychiatric symptoms, and autonomic dysfunction. Human herpesvirus-7 is often found with human herpesvirus-6 and infects leukocytes such as T-cells, monocytes–macrophages,...
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

We have a winner! - The Anti-NMDA Receptor Encephalitis Foundation Prize, 2023

We have a winner! - The Anti-NMDA Receptor Encephalitis Foundation Prize, 2023 | AntiNMDA | Scoop.it
It’s that time of year again, when the Foundation is delighted to offer its annual Anti-NMDA Receptor Encephalitis Foundation Prize to a promising neurology trainee ...Read More...
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Antibodies Associated With Autoimmune Encephalitis in Patients With Presumed Neurodegenerative Dementia | Neurology Neuroimmunology & Neuroinflammation

Antibodies Associated With Autoimmune Encephalitis in Patients With Presumed Neurodegenerative Dementia | Neurology Neuroimmunology & Neuroinflammation | AntiNMDA | Scoop.it
AbstractBackground & Objectives Autoimmune encephalitis (AIE) may present with prominent cognitive disturbances without overt inflammatory changes in MRI and CSF. Identification of these neurodegenerative dementia diagnosis mimics is important because patients generally respond to immunotherapy. The objective of this study was to determine the frequency of neuronal antibodies in patients with presumed neurodegenerative dementia and describe the clinical characteristics of the patients with neuronal antibodies.Methods In this retrospective cohort study, 920 patients were included with neurodegenerative dementia diagnosis from established cohorts at 2 large Dutch academic memory clinics. In total, 1,398 samples were tested (both CSF and serum in 478 patients) using immunohistochemistry (IHC), cell-based assays (CBA), and live hippocampal cell cultures (LN). To ascertain specificity and prevent false positive results, samples had to test positive by at least 2 different research techniques. Clinical data were retrieved from patient files.Results Neuronal antibodies were detected in 7 patients (0.8%), including anti-IgLON5 (n = 3), anti-LGI1 (n = 2), anti-DPPX, and anti-NMDAR. Clinical symptoms atypical for neurodegenerative diseases were identified in all 7 and included subacute deterioration (n = 3), myoclonus (n = 2), a history of autoimmune disease (n = 2), a fluctuating disease course (n = 1), and epileptic seizures (n = 1). In this cohort, no patients with antibodies fulfilled the criteria for rapidly progressive dementia (RPD), yet a subacute deterioration was reported in 3 patients later in the disease course. Brain MRI of none of the patients demonstrated abnormalities suggestive for AIE. CSF pleocytosis was found in 1 patient, considered as an atypical sign for neurodegenerative diseases. Compared with patients without neuronal antibodies (4 per antibody-positive patient), atypical clinical signs for neurodegenerative diseases were seen more frequently among the patients with antibodies (100% vs 21%, p = 0.0003), especially a subacute deterioration or fluctuating course (57% vs 7%, p = 0.009).Discussion A small, but clinically relevant proportion of patients suspected to have neurodegenerative dementias have neuronal antibodies indicative of AIE and might benefit from immunotherapy. In patients with atypical signs for neurodegenerative diseases, clinicians should consider neuronal antibody testing. Physicians should keep in mind the clinical phenotype and confirmation of positive test results to avoid false positive results and administration of potential harmful therapy for the wrong indication.GlossaryAD=Alzheimer dementia; AIE=autoimmune encephalitis; CBA=cell-based assays; DLB=dementia with Lewy bodies; IHC=immunohistochemistry; LN=live hippocampal cell cultures; PPA=primary progressive aphasia; PSP=progressive supranuclear palsy; RPD=rapidly progressive dementia; VGCC=voltage-gated calcium channelCognitive dysfunction can be the presenting and most prominent symptom in patients with autoimmune encephalitis (AIE).1,2 In contrast to neurodegenerative diseases, patients with antibody-mediated encephalitis might benefit from immunotherapy and improve considerably.3,4 The presence of neuronal antibodies has been reported predominantly in rapidly progressive dementia (RPD).5,6 However, AIE can present less fulminantly and is therefore potentially missed, resulting in diagnosis and treatment delay or even misdiagnosis.7,8 We hypothesized that a small—but not insignificant—part of dementia syndromes is indeed caused by antibody-mediated encephalitis and underdiagnosed, withholding these patients' available treatments. The wish to diagnose every single patient with autoimmune encephalitis is in opposition with the risk for false positive tests.9 Therefore, we strictly adhere to confirmation of positive test results with 2 different test techniques. In this study, we describe the frequency of neuronal antibodies in a cohort of patients diagnosed with various dementia syndromes in a memory clinic. In addition, we present clues to improve clinical recognition of AIE in dementia syndromes.MethodsPatients and Laboratory StudiesIn this retrospective multicenter study, we tested for the presence of neuronal antibodies in serum and CSF samples from patients diagnosed with neurodegenerative dementia diagnosis, included earlier prospectively in established cohorts at 2 large Dutch academic memory clinics (Erasmus University Medical Center, Amsterdam University Medical Centers, location VUmc)10 between 1998 and 2016 (84% last 10 years). All patients fulfilled the core clinical criteria for dementia, as defined by the National Institutes of Aging-Alzheimer Association workgroups.11 Patients were classified into 4 subgroups (based on diagnostic criteria): Alzheimer dementia (AD), frontotemporal dementia (FTD; both behavioral variant and primary progressive aphasia [PPA]), dementia with Lewy bodies (DLB), and other dementia syndromes.11,-,14 Rapidly progressive dementia was defined as dementia within 12 months or death within 2 years after the appearance of the first cognitive symptoms.15 Patients with vascular dementia were not included. Clinic information was retrieved from the prospectively collected data. A subacute deterioration was defined as a marked progression of symptoms in 3 months and a fluctuating course as a disease course fluctuating over a longer period (e.g., weeks to months; different from the fluctuations within a day as seen in some patients with DLB). Dementia markers were scored according to the reference values (per year and per center; included in Table 1).View inline View popup Table 1 Patient Characteristics of Auto-antibody Positive PatientsAll samples, stored in both cohorts' biobanks, were screened for immunoreactivity with immunohistochemistry (IHC), as previously described.16 Preferably, paired serum and CSF were tested for optimal sensitivity and specificity. Samples that were showing a positive or questionable staining pattern were tested more extensively using validated commercial cell-based assays (CBA) and in-house CBA (eTable 1, links.lww.com/NXI/A869). In addition, these samples were tested with live hippocampal cell cultures (LN).16,17 To ascertain specificity, only samples that could be confirmed by CBA or LN were scored as positive because there is a higher risk for false-positive test results in this population with a low a priori chance to have encephalitis.9,18 If IHC was suggestive for antibodies against intracellular (paraneoplastic) targets, this was explored by a different IHC technique.19 Anti-thyroid peroxidase (TPO), voltage-gated calcium channel (VGCC), or low titer glutamic acid decarboxylase antibodies were not tested for because these are generally nonspecific at these ages and are not associated with dementia syndromes.Antibody-positive patients were described exploratory and compared with a randomly selected antibody-negative group (ratio 1:4) matched for memory clinic, dementia subtype, sex, and age (±5 years). For these comparisons, medical records were additionally assessed for both the antibody-positive and antibody-negative patients. All antibody-positive patients were reviewed by a panel consisting of neurologists specialized in neurodegenerative (F.J., H.S., J.S.) or autoimmune diseases (J.V., P.S.S., M.T.), and a consensus classification of AIE vs AIE with a neurodegenerative dementia comorbidity was reached.Statistical AnalysisWe used IBM SPSS 25.0 (SPSS Inc) and Prism 8.4.3 (GraphPad) for statistical analysis. Baseline characteristics were analyzed using the Fisher exact test, the Fisher-Freeman-Halton test, or the Kruskal-Wallis test, when appropriate. For group comparisons, encompassing categorical data, we used the Pearson χ2 test or the Fisher-Freeman-Halton test, when appropriate. Continuous data were analyzed using the Mann-Whitney U test. All p-values were two-sided and considered statistically significant when below 0.05. We applied no correction for multiple testing, and therefore, p values between 0.05 and 0.005 should be interpreted carefully.Standard Protocol Approvals, Registrations, and Patient ConsentsThe study was approved by The Institutional Review Boards of Erasmus University Medical Center Rotterdam and Amsterdam University Medical Center, location VUmc. Written informed consent was obtained from all patients.Data AvailabilityAny data not published within this article are available at the Erasmus MC University Medical Center. Patient-related data will be shared on reasonable request from any qualified investigator, maintaining anonymization of the individual patients.ResultsIn total, 1,398 samples from 920 patients were tested (Figure; in 478, both CSF and serum [52%]). Three-hundred fifty-eight patients were classified as AD (39%), 283 FTD (31%), and 161 DLB (17%). The fourth subgroup with other dementia syndromes consisted of 118 patients (13%), including progressive supranuclear palsy (n = 48, 5%) and corticobasal syndrome (n = 29, 3%). The median age at disease onset was 62 years (range 16–90 years). Male patients were overrepresented (n = 542, 59%), and 60 patients (7%) fulfilled the criteria for rapidly progressive dementia (RPD; eTable 2, links.lww.com/NXI/A869).<img class="highwire-fragment fragment-image" alt="Figure" width="440" height="305" src="https://nn.neurology.org/content/nnn/10/5/e200137/F1.medium.gif">Download figure Open in new tab Download powerpoint Figure Flowchart of Patient Inclusion With Antibody ResultsIn total, 920 patients (1,398 samples) with a presumed neurodegenerative dementia syndrome were tested for the presence of neuronal antibodies in serum and CSF. Neuronal antibodies were detected in 7 patients (0.8%, 95% CI 0.2–1.3); five among the 358 Alzheimer disease patients. Subclassification of the ‘other’ group is provided in supplementary table eTable 2 (links.lww.com/NXI/A869). AD = Alzheimer disease; DLB = diffuse Lewy body dementia; DPPX = dipeptidyl aminopeptidase-like protein 6; FTD = frontotemporal dementia; IgLON5 = Ig-like domain-containing protein family member 5; LGI1 = leucin-rich glioma inactivated protein 1; NMDAR = N-methyl-d-aspartate receptor; S = serum.Neuronal antibodies were detected in 7 patients (0.8%; 5 in the AD group: 1.4%; Figure), including anti-IgLON5 (n = 3), anti-LGI1 (n = 2), anti-DPPX (n = 1), and anti-NMDAR antibodies (n = 1; Table 1). Among these 7, 4 patients were diagnosed retrospectively with an exclusive diagnosis of AIE, while 3 patients were classified to have AIE (anti-IgLON5 [n = 2] and anti-NMDAR antibodies [n = 1]) with a neurodegenerative dementia comorbidity. No patients with antibodies fulfilled the criteria for RPD, yet a subacute deterioration later in the disease was reported in 3 patients. Atypical clinical signs for neurodegenerative diseases were present in 7 of 7 antibody-positive patients (100% vs 21% in antibody-negative patients, p = 0.0003; Table 2). These included a subacute deterioration (n = 3), myoclonus (n = 2), a fluctuating disease course over months (n = 1), a history of autoimmune disease (n = 2), and epileptic seizures (n = 1; Table 1). Brain MRI of none of the patients demonstrated abnormalities suggestive for active AIE, in particular no hippocampal swelling nor increased T2-signal intensity. CSF pleocytosis was found in 1 patient. CSF biomarkers (t-tau, p-tau, and Aβ42) were tested in 5 of 7 patients, and t-tau and p-tau were increased in 4, while a low Aβ42 was seen in 2. Of note, only 1 patient had the combination of reduced Aβ42 and increased p-tau/t-tau, and was diagnosed with a comorbid AD. No patient received immunotherapy. Two patients still alive (1 anti-LG1, 1 anti-DPPX positive) were contacted but refused to visit our clinic to try very delayed immunotherapy trials. It is of interest that the patient with anti-DPPX antibodies showed spontaneous improvement of cognitive disturbances, atypical for a pure neurodegenerative disease.View inline View popup Table 2 Comparisons Between Patients With Neuronal Auto-antibodies and Antibody-Negative PatientsCompared with the patients without neuronal antibodies, subacute cognitive deterioration or fluctuating course was present more frequently (4/7 [57%] vs 2/28 [7%], p = 0.009). Although movement disorders (myoclonus) and autoimmune disorders were present in 2 of 7 patients each, this did not reach significance (Table 2).DiscussionIn this large, multicenter, cohort study consisting of patients with a presumed neurodegenerative dementia diagnosis, we show that a small, but clinically relevant proportion (0.8%) have neuronal antibodies. In this particular group, 4 of 7 antibody-positive patients presented with an atypical clinical course (subacute deterioration or fluctuating disease course), which is considered as a clinical clue (‘red flag’) for an antibody-mediated etiology of dementia.4 It is important that a fluctuating disease course was observed over a longer period (e.g., weeks or months) in AIE and should not be confused with shorter fluctuations of cognition or alertness (over the day) in DLB. Other known red flags, which we observed in these 7 patients, were myoclonus, epilepsy, pleocytosis, or a history of autoimmune disorders, as described earlier.1,4,-,6 Compared with antibody-negative patients, no significant difference was found related to these symptoms alone, probably due to the low number of positive patients and related low power. However, atypical clinical signs for neurodegenerative diseases together were seen significantly more frequently in the antibody-positive group. Within this cohort mostly devoid of patients with RPD, none of the antibody-positive patients fulfilled the criteria for RPD, nor ancillary testing showed specific signs for AIE in most patients. This implicates that AIE can resemble more protracted, progressive neurodegenerative dementia syndromes, as we reported earlier.1Three antibody-positive patients had IgLON5 antibodies, which is a very rare and known to have heterogeneous (chronic) clinical manifestations, including pronounced sleep problems, cognitive dysfunction, and movement disorders.20,21 Misdiagnosis with progressive supranuclear palsy (PSP) is reported, mainly associated with the preceding movement disorders. In addition, half of the patients have cognitive impairment of whom 20% fulfilled clinical criteria for dementia.21 It is of interest that IgLON5 disease shares features with neurodegeneration because autopsy studies showed tau deposits.22 However, there is a strong HLA association,20 and studies show that antibodies directly bind to surface IgLON5 on neurons and directly alter neuronal function and structure,23 suggesting a primary inflammatory disease.In previous research, a notably higher frequency (14%) of neuronal antibodies in patients with dementia was reported by Giannocaro et al.24 The discrepancy with our test results is probably explained by differences in patient selection and antibody testing methodology. First, 30% of the patients in the cohort described by Giannocaro et al. demonstrated CSF inflammatory abnormalities, indicating a relatively high pretest probability of antibody-positivity compared with our study.24 A lack of CSF pleocytosis probably better represents the population of memory clinics. Second, the previous study exclusively tested serum by cell-based assay without confirmatory tests nor testing antibodies in CSF.24 We only considered antibody test results positive when confirmed by additional techniques to avoid suboptimal specificity and false-positive test results.9Previous studies, including our own, suggested RPD as a relevant red flag for AIE,1,4,9,25 but we cannot determine this from our study based on the design of our study. We included patients at tertiary memory clinics without overt signs or symptoms suggestive for encephalitis. Therefore, the amount of patients with RPD included was very limited (7%), comparable with other large dementia cohort studies, as was the amount of patients with abnormal ancillary testing suggestive for AIE because this would have prompted a different approach than referral to a tertiary memory clinic. These patients with RPD and ancillary testing suggestive of AIE were not included in our study. Inclusion of those patients would have likely increased our rate of positivity.The strength of our study is the large number of paired samples (serum and CSF combined) from a cohort with various presumed neurodegenerative diseases without AIE suspicion, representative for academic memory clinics. A limitation is the lack of neuropathologic data to support our findings and make diagnoses of neurodegeneration or inflammation definite. To confirm if the symptoms are related to the presence of antibodies, we tried to overcome this concern in different ways. First, the presence of antibodies in serum and CSF was confirmed by different techniques (cell-based assay, tissue immunohistochemistry, and cultured live neurons), indicating optimal test specificity. Second, afterward patients were thoroughly reviewed by a panel of neurologists specialized in neurodegenerative or autoimmune disease to detect atypical signs and symptoms related to AIE. This is a very large cohort of patients with dementia examined for the presence of neuronal antibodies. Nevertheless, an important limitation of this study is the small number of antibody-positive patients, underpowering the probability to identify significant differences between antibody-positive and antibody-negative patients. The low number of patients with RPD has probably added to this small number, and a prospective study including patients with RPD is recommended. Nevertheless, several probable red flags could be identified. Diagnosing AIE in patients with dementia is highly relevant because these patients might respond to immunotherapy. Therefore, clinicians should test for neuronal antibody in patients demonstrating red flags suggestive for an autoimmune etiology, if possible early in disease course. When profound temporal lobe atrophy already has developed, little effect is to be expected. Red flags identified in this study are subacute deterioration or fluctuating course. Other red flags described previously, we also see reflected in our study, are autoimmune disorders, myoclonus, seizures, and pleocytosis,1,4,-,6 Preferably, both serum and CSF should be tested and confirmed by additional techniques. Always consider the possibility of a false positive test result, especially when only using a single technique (like the commercial cell-based assay). If the clinical phenotype is atypical, confirmation in a research laboratory should be mandatory. The use of antibody panels is discouraged, especially including the paraneoplastic blots, because these are associated with higher risks of lack of clinical relevance.26 This caution is even more warranted for tests not associated with neurodegenerative syndromes, but with a history of nonspecificity, including VGKC (in the absence of LGI1 or CASPR2), VGCC, anti-TPO, and low-titer anti-GAD65.27,-,30 Further research should focus on improving clinical recognition of AIE in patients with dementia determining the effect of immunotherapy in this specific patient category and assessing the frequency of AIE in RPD.In conclusion, we have shown that a clinically relevant, albeit small proportion of patients with a suspected neurodegenerative disease and nonrapidly progressive course have neuronal antibodies indicative of AIE.Study FundingM.J. Titulaer was supported by an Erasmus MC fellowship and has received funding from the Netherlands Organization for Scientific Research (NWO, Veni incentive), ZonMw (Memorabel program), the Dutch Epilepsy Foundation (NEF 14-19 & 19-08), Dioraphte (2001 0403), and E-RARE JTC 2018 (UltraAIE, 90030376505). F. Leypoldt has received funding from the German Ministry of Education and Research (01GM1908A) and the Era-Net funding program (LE3064/2-1).DisclosureA.E.M. Bastiaansen reports no disclosures. R.W. van Steenhoven reports no disclosures. Research programs of Wiesje van der Flier have been funded by ZonMW, now, EUFP7, EU-JPND, Alzheimer Nederland, Hersenstichting CardioVascular Onderzoek Nederland, Health∼Holland, Topsector Life Sciences & Health, stichting Dioraphte, Gieskes-Strijbis fonds, stichting Equilibrio, Edwin Bouw fonds, Pasman stichting, stichting Alzheimer & Neuropsychiatrie Foundation, Philips, Biogen MA Inc, Novartis-NL, Life-MI, AVID, Roche BV, Fujifilm, and Combinostics. W.M. van der Flier holds the Pasman chair. W.M. van der Flier is recipient of ABOARD, which is a public-private partnership receiving funding from ZonMW (#73305095007) and Health Holland, Topsector Life Sciences & Health (PPP-allowance; #LSHM20106). All funding is paid to her institution. WF has performed contract research for Biogen MA Inc and Boehringer Ingelheim. All funding is paid to her institution. W.M. van der Flier has been an invited speaker at Boehringer Ingelheim, Biogen MA Inc, Danone, Eisai, WebMD Neurology (Medscape), and Springer Healthcare. All funding is paid to her institution. W.M. van der Flier is consultant to Oxford Health Policy Forum CIC, Roche, and Biogen MA Inc. All funding is paid to her institution. W.M. van der Flier participated in advisory boards of Biogen MA Inc and Roche. All funding is paid to her institution. W.M. van der Flier is a member of the steering committee of PAVE and Think Brain Health. W.M. van der Flier was an associate editor of Alzheimer, Research & Therapy in 2020/2021. W.M. van der Flier is an associate editor at Brain. Research of C. Teunissen was supported by the European Commission (Marie Curie International Training Network, Grant Agreement No. 860197 (MIRIADE)), Innovative Medicines Initiatives 3TR (Horizon 2020, Grant No. 831434), EPND (IMI 2 Joint Undertaking (JU) under Grant Agreement No. 101034344) and JPND (bPRIDE), National MS Society (Progressive MS alliance) and Health Holland, the Dutch Research Council (ZonMW), Alzheimer Drug Discovery Foundation, The Selfridges Group Foundation, Alzheimer Netherlands, and Alzheimer Association. C. Teunissen is recipient of ABOARD, which is a public-private partnership receiving funding from ZonMW (#73305095007) and Health∼Holland, Topsector Life Sciences & Health (PPP-allowance, #LSHM20106). ABOARD also receives funding from Edwin Bouw Fonds and Gieskes-Strijbisfonds. C. Teunissen has a collaboration contract with ADx Neurosciences, Quanterix, and Eli Lilly, performed contract research or received grants from AC-Immune, Axon Neurosciences, Bioconnect, Bioorchestra, Brainstorm Therapeutics, Celgene, EIP Pharma, Eisai, Grifols, Novo Nordisk, PeopleBio, Roche, Toyama, and Vivoryon. She serves on editorial boards of Medidact Neurologie/Springer, Alzheimer Research and Therapy, and Neurology: Neuroimmunology & Neuroinflammation and is an editor of a Neuromethods book Springer. She had speaker contracts for Roche, Grifols, and Novo Nordisk. E. de Graaff holds a patent for the detection of anti-DNER antibodies. M.M.P. Nagtzaam reports no disclosures. M. Paunovic reports no disclosures. S. Franken reports no disclosures. M.W.J. Schreurs reports no disclosures. F. Leypoldt has received speakers honoraria from Grifols, Roche, Novartis, Alexion, and Biogen and serves on an advisory board for Roche and Biogen. He works for an academic institution (University Hospital Schleswig-Holstein) which offers commercial autoantibody testing. P.A.E. Sillevis Smitt holds a patent for the detection of anti-DNER and received research support from Euroimmun. J.M. de Vries reports no disclosures. H. Seelaar reports no disclosures. J.C. van Swieten reports no disclosures. F.J. de Jong reports no disclosures. Y.A.L. Pijnenburg Research of Alzheimer center Amsterdam is part of the neurodegeneration research program of Amsterdam Neuroscience. Alzheimer Center Amsterdam is supported by Stichting Alzheimer Nederland and Stichting VUmc fonds. The chair of Wiesje van der Flier is supported by the Pasman stichting. M.J. Titulaer has filed a patent, on behalf of the Erasmus MC, for methods for typing neurologic disorders and cancer, and devices for use therein, and has received research funds for serving on a scientific advisory board of Horizon Therapeutics, for consultation at Guidepoint Global LLC, for consultation at UCB, for teaching colleagues by Novartis. MT has received an unrestricted research grant from Euroimmun AG and from CSL Behring. Go to Neurology.org/NN for full disclosure.AcknowledgmentThe authors thank all patients for their participation. The authors also thank Esther Hulsenboom and Ashraf Jozefzoon-Aghai for their technical assistance. M.W.J. Schreurs, F. Leypoldt, P.A.E. Sillevis Smitt, J.M. de Vries, and M.J. Titulaer of this publication are members of the European Reference Network for Rare Immunodeficiency, Autoinflammatory, and Autoimmune Diseases—Project ID No. 739543 (ERN-RITA; HCP Erasmus MC and University Hospital Schleswig-Holstein). H. Seelaar, J.C. van Swieten, and F.J. de Jong of this publication are members of the European Reference Network for Rare Neurological Diseases—Project ID 73910. Research of the VUmc Alzheimer center is part of the neurodegeneration research program of Amsterdam Neuroscience. The Alzheimer Center VUmc is supported by Alzheimer Nederland and Stichting VUmc Fonds. The clinical database structure was developed with funding from Stichting Dioraphte.Appendix Authors<img class="highwire-fragment fragment-image" alt="Table" src="https://nn.neurology.org/content/nnn/10/5/e200137/T3.medium.gif"; width="599" height="2531">FootnotesGo to Neurology.org/NN for full disclosures. Funding information is provided at the end of the article.The Article Processing Charge was funded the authors.Submitted and externally peer reviewed. The handling editor was Editor Josep O. Dalmau, MD, PhD, FAAN.Received December 8, 2022.Accepted in final form May 8, 2023.Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.References1.↵Bastiaansen AEM, van Steenhoven RW, de Bruijn M, et al. Autoimmune encephalitis resembling dementia syndromes. Neurol Neuroimmunol Neuroinflamm. 2021;8(5):e1039.OpenUrlAbstract/FREE Full Text2.↵Lancaster E, Lai M, Peng X, et al. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol. 2010;9(1):67-76.OpenUrlCrossRefPubMed3.↵Titulaer MJ, McCracken L, Gabilondo I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12(2):157-165.OpenUrlCrossRefPubMed4.↵Flanagan EP, McKeon A, Lennon VA, et al. Autoimmune dementia: clinical course and predictors of immunotherapy response. Mayo Clin Proc. 2010;85(10):881-897.OpenUrlCrossRefPubMed5.↵Geschwind MD, Tan KM, Lennon VA, et al. Voltage-gated potassium channel autoimmunity mimicking creutzfeldt-jakob disease. Arch Neurol. 2008;65(10):1341-1346.OpenUrlCrossRefPubMed6.↵Grau-Rivera O, Sanchez-Valle R, Saiz A, et al. Determination of neuronal antibodies in suspected and definite Creutzfeldt-Jakob disease. JAMA Neurol. 2014;71(1):74-78.OpenUrl7.↵Titulaer MJ, McCracken L, Gabilondo I, et al. Late-onset anti-NMDA receptor encephalitis. Neurology. 2013;81(12):1058-1063.OpenUrlAbstract/FREE Full Text8.↵Gaig C, Graus F, Compta Y, et al. Clinical manifestations of the anti-IgLON5 disease. Neurology. 2017;88(18):1736-1743.OpenUrlAbstract/FREE Full Text9.↵Bastiaansen AEM, de Bruijn M, Schuller SL, et al. Anti-NMDAR encephalitis in The Netherlands, focusing on late-onset patients and antibody test accuracy. Neurol Neuroimmunol Neuroinflamm. 2022;9(2):e1127.OpenUrl10.↵van der Flier WM, Scheltens P. Amsterdam dementia cohort: performing research to optimize care. J Alzheimers Dis. 2018;62(3):1091-1111.OpenUrl11.↵McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):263-269.OpenUrlCrossRefPubMed12.↵Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456-2477.OpenUrlCrossRefPubMed13.↵Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006-1014.OpenUrlAbstract/FREE Full Text14.↵McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88-100.OpenUrlAbstract/FREE Full Text15.↵Geschwind MD. Rapidly progressive dementia. Continuum (Minneap Minn). 2016;22(2 Dementia):510-537.OpenUrl16.↵Ances BM, Vitaliani R, Taylor RA, et al. Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PET correlates. Brain. 2005;128(Pt 8):1764-1777.OpenUrlCrossRefPubMed17.↵Gresa-Arribas N, Titulaer MJ, Torrents A, et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol. 2014;13(2):167-177.OpenUrlCrossRefPubMed18.↵Martinez-Martinez P, Titulaer MJ. Autoimmune psychosis. Lancet Psychiatry. 2020;7(2):122-123.OpenUrl19.↵van Coevorden-Hameete MH, Titulaer MJ, Schreurs MW, et al. Detection and characterization of autoantibodies to neuronal cell-surface antigens in the central nervous system. Front Mol Neurosci. 2016;9:37.OpenUrl20.↵Sabater L, Gaig C, Gelpi E, et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol. 2014;13(6):575-586.OpenUrlCrossRefPubMed21.↵Gaig C, Compta Y, Heidbreder A, et al. Frequency and characterization of movement disorders in anti-IgLON5 disease. Neurology. 2021;97(14):e1367–e1381.OpenUrlAbstract/FREE Full Text22.↵Gelpi E, Hoftberger R, Graus F, et al. Neuropathological criteria of anti-IgLON5-related tauopathy. Acta Neuropathol. 2016;132(4):531-543.OpenUrlCrossRefPubMed23.↵Landa J, Gaig C, Plaguma J, et al. Effects of IgLON5 antibodies on neuronal cytoskeleton: a link between autoimmunity and neurodegeneration. Ann Neurol. 2020;88(5):1023-1027.OpenUrlCrossRefPubMed24.↵Giannoccaro MP, Gastaldi M, Rizzo G, et al. Antibodies to neuronal surface antigens in patients with a clinical diagnosis of neurodegenerative disorder. Brain Behav Immun. 2021;96:106-112.OpenUrl25.↵Hermann P, Zerr I. Rapidly progressive dementias - aetiologies, diagnosis and management. Nat Rev Neurol. 2022;18(6):363-376.OpenUrl26.↵Dechelotte B, Muniz-Castrillo S, Joubert B, et al. Diagnostic yield of commercial immunodots to diagnose paraneoplastic neurologic syndromes. Neurol Neuroimmunol Neuroinflamm. 2020;7(3):e701.OpenUrlAbstract/FREE Full Text27.↵van Sonderen A, Schreurs MW, de Bruijn MA, et al. The relevance of VGKC positivity in the absence of LGI1 and Caspr2 antibodies. Neurology. 2016;86(18):1692-1699.OpenUrlCrossRefPubMed28.↵Muñoz Lopetegi A, Boukhrissi S, Bastiaansen A, et al. Neurological syndromes related to anti-GAD65: clinical and serological response to treatment. Neurol Neuroimmunol Neuroinflamm. 2020;7(3):e696.OpenUrlAbstract/FREE Full Text29.↵Mattozzi S, Sabater L, Escudero D, et al. Hashimoto encephalopathy in the 21st century. Neurology. 2020;94(2):e217-e224.OpenUrlAbstract/FREE Full Text30.↵Flanagan EP, Geschwind MD, Lopez-Chiriboga AS, et al. Autoimmune encephalitis misdiagnosis in adults. JAMA Neurol. 2023;80(1):30-39.OpenUrl
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Research study - can you help?

Research study - can you help? | AntiNMDA | Scoop.it
Researchers at Kings College London are looking for young people to travel to London and help with an encephalitis study...
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Sociocultural Influences in Autoimmune Encephalitis Without Neurologic Symptoms

Sociocultural Influences in Autoimmune Encephalitis Without Neurologic Symptoms | AntiNMDA | Scoop.it
This complex case highlights barriers to identifying autoimmune encephalitis when no neurologic symptoms are present, which are normally central to disease detection.
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Anti N-Methyl-D-Aspartate receptor antibody associated Acute Demyelinating Encephalomyelitis in a patient with COVID-19: a case report | Journal of Medical Case Reports | Full Text

Anti N-Methyl-D-Aspartate receptor antibody associated Acute Demyelinating Encephalomyelitis in a patient with COVID-19: a case report | Journal of Medical Case Reports | Full Text | AntiNMDA | Scoop.it
Background Anti N-Methyl-D-Aspartate (NMDA) receptor antibody associated ADEM is a diagnosis that was first described relatively recently in 2007 by Dalmau et al. The recent COVID-19 pandemic has resulted in multiple neurological complications being reported.
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Autoimmune Encephalitis Consensus Criteria | Neurology Clinical Practice

Autoimmune Encephalitis Consensus Criteria | Neurology Clinical Practice | AntiNMDA | Scoop.it
June 2023; 13 (3) Editorial Autoimmune Encephalitis Consensus CriteriaLessons Learned From Real-World Practice View ORCID ProfileJeffrey M. Gelfand, Chu-Yueh Guo First published April 25, 2023, DOI: https://doi.org/10.1212/CPJ.0000000000200155 Full PDF Citation Permissions Make Comment See Comments Downloads133 Share Article Info & Disclosures This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased. Autoimmune encephalitis (AE) encompasses a spectrum of neurologic disorders caused by brain inflammation, a subset of which is associated with autoantibodies to neuronal cell-surface antigens such as anti-N-methyl-d-aspartate (NMDA) receptor AE or anti-leucine-rich glioma-inactivated 1 (LGI1) AE.1 Up to half of patients with AE, however, do not have abnormal neuronal or glial autoantibodies identified and are classified as having “seronegative” AE.2 Clinical antibody testing can take several days to result, a time in which clinicians caring for patients with suspected AE may wish to initiate empiric immunosuppressive therapy. Antibody testing is also not readily accessible in some health care settings and, even when technically available, may require time-consuming advocacy with local clinical laboratories to justify relatively costly send-out testing. To add further complexity, some patients with immunoreactive (e.g., laboratory true-positive) antibodies do not have clinical AE, and over-reliance and misapplication of antibody testing were identified as important contributors to AE misdiagnosis in a 2023 multicenter analysis.3FootnotesFunding information and disclosures are provided at the end of the article. Full disclosure form information provided by the authors is available with the full text of this article at Neurology.org/cp.See page e200151© 2023 American Academy of NeurologyView Full Text AAN Members We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page. Google Safari Microsoft Edge Firefox Click here to login AAN Non-Member Subscribers Click here to login Purchase access For assistance, please contact: AAN Members (800) 879-1960 or (612) 928-6000 (International) Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international) Sign Up Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here Purchase Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed. You May Also be Interested in Back to top Safety and Efficacy of Tenecteplase and Alteplase in Patients With Tandem Lesion Stroke: A Post Hoc Analysis of the EXTEND-IA TNK Trials Dr. Nicole Sur and Dr. Mausaminben Hathidara ► Watch Related Articles Autoimmune Encephalitis Criteria in Clinical Practice Topics Discussed All Clinical Neurology Autoimmune diseases Encephalitis Alert Me Alert me when eletters are published
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Predictive Value of Serum Neurofilament Light Chain Levels in Anti-NMDA Receptor Encephalitis

Predictive Value of Serum Neurofilament Light Chain Levels in Anti-NMDA Receptor Encephalitis | AntiNMDA | Scoop.it
Increased serum NfL levels reflect neuroaxonal damage in anti-NMDAR encephalitis. No relationship was identified with disease severity, whereas the association with outcome was confounded by age.The implied role of sampling timing on NfL levels also limits the applicability of NfL as a prognostic...
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Frontiers | The MOG antibody associated encephalitis preceded by COVID-19 infection; a case study and systematic review of the literature

Frontiers | The MOG antibody associated encephalitis preceded by COVID-19 infection; a case study and systematic review of the literature | AntiNMDA | Scoop.it
BackgroundNew neurological complications of COVID-19 infection have been reported in recent research. Among them, the spectrum of anti-MOG positive diseases, defined as anti-MOG antibody associated disease (MOGAD), is distinguished, which can manifest as optic neuritis, myelitis, or various forms...
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Enceph-IG Study - Institute of Infection, Veterinary and Ecological Sciences - University of Liverpool

Enceph-IG Study - Institute of Infection, Veterinary and Ecological Sciences - University of Liverpool | AntiNMDA | Scoop.it
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

A Rare Presentation of Steroid-responsive Encephalopathy Associated with Autoimmune Thyroiditis with Neuropsychiatric Symptoms: A Case Report

A Rare Presentation of Steroid-responsive Encephalopathy Associated with Autoimmune Thyroiditis with Neuropsychiatric Symptoms: A Case Report | AntiNMDA | Scoop.it
A 42-year-old woman presented in the emergency department with acute onset whole-body myoclonic jerks for 1 day.On enquiry, the patient’s parents advised...
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Pioneering Research in Autoimmune Neurology: Vanda Lennon, M.D., Ph.D.

Pioneering Research in Autoimmune Neurology: Vanda Lennon, M.D., Ph.D. | AntiNMDA | Scoop.it
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

New center to spotlight neurological autoimmune disorders

New center to spotlight neurological autoimmune disorders | AntiNMDA | Scoop.it
How do neurological disorders arise that are caused, triggered, or influenced by antibodies? What better possibilities are there for diagnosis – and above all for treatment? These are the questions addressed by the new Clinical Research Unit “BecauseY” headed by Charité – Universitätsmedizin Berlin.
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Progressive alliance advances science through patient-powered research

Progressive alliance advances science through patient-powered research | AntiNMDA | Scoop.it
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

ENCEPH-IG Trial: The Challenges Of Running A Rare Disease Trial - Centre for Trials Research

ENCEPH-IG Trial: The Challenges Of Running A Rare Disease Trial - Centre for Trials Research | AntiNMDA | Scoop.it
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

30 neurological disorders every doctor should know about –

30 neurological disorders every doctor should know about – | AntiNMDA | Scoop.it
Neurology is a jungle of disorders and syndromes. This creates a challenge for doctors and medical students... What to prioritise for learning and practice? *** To solve this conundrum... We combed the extensive database of Neurochecklists...
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

A score that predicts 1-year functional status in patients with anti-NMDA receptor encephalitis

A score that predicts 1-year functional status in patients with anti-NMDA receptor encephalitis | AntiNMDA | Scoop.it
The NEOS score accurately predicts 1-year functional status in patients with anti-NMDAR encephalitis. This score could help estimate the clinical course following diagnosis and may aid in identifying patients who could benefit from novel therapies.
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Canadian Blood Services needs thousands more donors to roll up their sleeves | CBC News

Canadian Blood Services needs thousands more donors to roll up their sleeves | CBC News | AntiNMDA | Scoop.it
Canadian Blood Services is looking to fill 150,000 appointments for people willing to donate their blood or plasma to tackle a shortage.
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

A catatonic woman awakened after 20 years. Her story may change psychiatry – My Health CRM

A catatonic woman awakened after 20 years. Her story may change psychiatry – My Health CRM | AntiNMDA | Scoop.it
New research suggests that a subset of patients with psychiatric conditions such as schizophrenia may actually have autoimmune disease that attacks the brain...
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Case Report: Paroxysmal weakness of unilateral limb as an initial symptom in anti-LGI1 encephalitis: a report of five cases

Case Report: Paroxysmal weakness of unilateral limb as an initial symptom in anti-LGI1 encephalitis: a report of five cases | AntiNMDA | Scoop.it
Anti-leucine-rich glioma-inactivated 1 (LGI1) encephalitis is the second most common kind of autoimmune encephalitis following anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis.Anti-LGI1 encephalitis is characterized by cognitive impairment or rapid progressive dementia, psychiatric disorders...
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Medical Moment: The signs of ‘brain-on-fire’ disease

Medical Moment: The signs of ‘brain-on-fire’ disease | AntiNMDA | Scoop.it
(WNDU) - Imagine being totally fine one day, then the next, you’re having hallucinations, seizures, memory loss, and even trouble talking.It’s called “brain-on-fire” disease or anti-NMDA receptor encephalitis. It’s a rare neurological disorder that can cause inflammation in the brain.It occurs when the body’s immune system mistakenly attacks the NMDA receptors in the brain, which are responsible for regulating communication between nerve cells. Brain-on-fire disease is often misdiagnosed as other neurological disorders or psychiatric illnesses because its symptoms are similar to those of many other conditions.However, a blood or cerebrospinal fluid test can help diagnose the disease by detecting the presence of antibodies that attack the NMDA receptors in the brain. The disease is rare as it affects one in 1.5 million people a year.Katie Miller would be one of those people.Hunting, mountain biking, horseback riding - you name it, Katie Miler would do it... until she couldn’t.“I just didn’t feel like myself, like normal,” Katie recalled.“Katie said, ‘Mom, I feel like my brain snapped,’” said Colleen Miller, Katie’s mother.Local doctors admitted Katie into a psychiatric ward, but what was happening to Katie wasn’t mental; it was physical.“What happens is you’re perfectly normal one day, and suddenly overnight, this person can become paranoid, can start having visual hallucinations, auditory hallucinations,” explained Stacy Clardy, MD, PhD, an autoimmune neurologist at the University of Utah.Anti-NMDA receptor encephalitis is misdiagnosed as a psychiatric disorder in up to 40% of patients.“So, for many of the females, especially after puberty, they can develop what’s called an ovarian dermoid cyst or an ovarian teratoma,” Dr. Clardy said.These cysts often have hair and teeth in them. The immune system sees it as foreign and attacks it, but...“In these cysts, there is a component of tissue that really is brain tissue,” Dr. Clardy continued.Within four days, Katie was catatonic and needed a ventilator to breathe. There is no single approved treatment. That’s why a five-year, nationwide clinical trial is testing whether a drug called Inebilizumab will stop the assault on the brain. It has the potential to improve outcomes for patients who are not responding to other treatments and may also lead to fewer long-term neurological effects.Katie had her cyst removed; she can’t remember three months of her life. But now, with various medications, Katie is on her way to recovery.Up to 50% of patients can suffer long-term consequences, especially cognitive and mood symptoms.Copyright 2023 WNDU. All rights reserved.
No comment yet.